A. G. Kolosko, S. Filippov, M. Chumak, E. O. Popov, G. Demin, I. D. Evsikov, N. Djuzhev
{"title":"Features of evaluating properties of field emitters using effective parameters","authors":"A. G. Kolosko, S. Filippov, M. Chumak, E. O. Popov, G. Demin, I. D. Evsikov, N. Djuzhev","doi":"10.1109/PowerMEMS49317.2019.8206320100884","DOIUrl":null,"url":null,"abstract":"The paper considers the features of evaluating the effective parameters of nanostructured field cathodes – the area of the field emission Seff and the field gain $\\beta_{eff}$. A variety of approaches to parameter estimates is shown. The dependence of these estimates on the magnitude of the applied electric voltage is shown by the example of a three-dimensional model of a carbon nanotube. The possibility of the experimentally estimation of individual emission sites using a computerized field projector is considered. A method for analyzing the current-voltage characteristics in Fowler-Nordheim coordinates (IVC-FN) with an interval estimate of the effective parameters is proposed.","PeriodicalId":6648,"journal":{"name":"2019 19th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)","volume":"17 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 19th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PowerMEMS49317.2019.8206320100884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The paper considers the features of evaluating the effective parameters of nanostructured field cathodes – the area of the field emission Seff and the field gain $\beta_{eff}$. A variety of approaches to parameter estimates is shown. The dependence of these estimates on the magnitude of the applied electric voltage is shown by the example of a three-dimensional model of a carbon nanotube. The possibility of the experimentally estimation of individual emission sites using a computerized field projector is considered. A method for analyzing the current-voltage characteristics in Fowler-Nordheim coordinates (IVC-FN) with an interval estimate of the effective parameters is proposed.