Simulation-Based Multi-Objective Optimization for Reconfigurable Manufacturing System Configurations Analysis

Carlos Alberto Barrera Diaz, Tehseen Aslam, Amos H. C. Ng, Erik Flores-García, Magnus Wiktorsson
{"title":"Simulation-Based Multi-Objective Optimization for Reconfigurable Manufacturing System Configurations Analysis","authors":"Carlos Alberto Barrera Diaz, Tehseen Aslam, Amos H. C. Ng, Erik Flores-García, Magnus Wiktorsson","doi":"10.1109/WSC48552.2020.9383902","DOIUrl":null,"url":null,"abstract":"The purpose of this study is to analyze the use of Simulation-Based Multi-Objective Optimization (SMO) for Reconfigurable Manufacturing System Configuration Analysis (RMS-CA). In doing so, this study addresses the need for efficiently performing RMS-CA with respect to the limited time for decision-making in the industry, and investigates one of the salient problems of RMS-CA: determining the minimum number of machines necessary to satisfy the demand. The study adopts an NSGA II optimization algorithm and presents two contributions to existing literature. Firstly, the study proposes a series of steps for the use of SMO for RMS-CA and shows how to simultaneously maximize production throughput, minimize lead time, and buffer size. Secondly, the study presents a qualitative comparison with the prior work in RMS-CA and the proposed use of SMO; it discusses the advantages and challenges of using SMO and provides critical insight for production engineers and managers responsible for production system configuration.","PeriodicalId":6692,"journal":{"name":"2020 Winter Simulation Conference (WSC)","volume":"62 1","pages":"1527-1538"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Winter Simulation Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC48552.2020.9383902","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The purpose of this study is to analyze the use of Simulation-Based Multi-Objective Optimization (SMO) for Reconfigurable Manufacturing System Configuration Analysis (RMS-CA). In doing so, this study addresses the need for efficiently performing RMS-CA with respect to the limited time for decision-making in the industry, and investigates one of the salient problems of RMS-CA: determining the minimum number of machines necessary to satisfy the demand. The study adopts an NSGA II optimization algorithm and presents two contributions to existing literature. Firstly, the study proposes a series of steps for the use of SMO for RMS-CA and shows how to simultaneously maximize production throughput, minimize lead time, and buffer size. Secondly, the study presents a qualitative comparison with the prior work in RMS-CA and the proposed use of SMO; it discusses the advantages and challenges of using SMO and provides critical insight for production engineers and managers responsible for production system configuration.
基于仿真的可重构制造系统构型分析多目标优化
本研究的目的是分析基于仿真的多目标优化(SMO)在可重构制造系统配置分析(RMS-CA)中的应用。在此过程中,本研究解决了在有限的行业决策时间内有效执行RMS-CA的需求,并研究了RMS-CA的一个突出问题:确定满足需求所需的最小机器数量。本研究采用NSGA II优化算法,对已有文献有两方面的贡献。首先,该研究提出了在RMS-CA中使用SMO的一系列步骤,并展示了如何同时最大化生产吞吐量,最小化交货时间和缓冲区大小。其次,本研究对RMS-CA的前期工作和SMO的建议使用进行了定性比较;它讨论了使用SMO的优势和挑战,并为负责生产系统配置的生产工程师和管理人员提供了关键的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信