{"title":"The Rate of Convergence of the SOR Method in the Positive Semidefinite Case","authors":"Achiya Dax","doi":"10.1155/2022/6143444","DOIUrl":null,"url":null,"abstract":"<div>\n <p>In this paper, we derive upper bounds that characterize the rate of convergence of the SOR method for solving a linear system of the form <i>G</i><i>x</i> = <i>b</i>, where <i>G</i> is a real symmetric positive semidefinite <i>n</i> × <i>n</i> matrix. The bounds are given in terms of the condition number of <i>G</i>, which is the ratio <i>κ</i> = <i>α</i>/<i>β</i>, where <i>α</i> is the largest eigenvalue of <i>G</i> and <i>β</i> is the smallest nonzero eigenvalue of <i>G</i>. Let <i>H</i> denote the related iteration matrix. Then, since <i>G</i> has a zero eigenvalue, the spectral radius of <i>H</i> equals 1, and the rate of convergence is determined by the size of <i>η</i>, the largest eigenvalue of <i>H</i> whose modulus differs from 1. The bound has the form |<i>η</i>|<sup>2</sup> ≤ 1 − 1/(<i>κ</i><i>c</i>), where <i>c</i> = 2 + log<sub>2</sub><i>n</i>. The main consequence from this bound is that small condition number forces fast convergence while large condition number allows slow convergence.</p>\n </div>","PeriodicalId":100308,"journal":{"name":"Computational and Mathematical Methods","volume":"2022 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2022/6143444","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Methods","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2022/6143444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we derive upper bounds that characterize the rate of convergence of the SOR method for solving a linear system of the form Gx = b, where G is a real symmetric positive semidefinite n × n matrix. The bounds are given in terms of the condition number of G, which is the ratio κ = α/β, where α is the largest eigenvalue of G and β is the smallest nonzero eigenvalue of G. Let H denote the related iteration matrix. Then, since G has a zero eigenvalue, the spectral radius of H equals 1, and the rate of convergence is determined by the size of η, the largest eigenvalue of H whose modulus differs from 1. The bound has the form |η|2 ≤ 1 − 1/(κc), where c = 2 + log2n. The main consequence from this bound is that small condition number forces fast convergence while large condition number allows slow convergence.