The Rate of Convergence of the SOR Method in the Positive Semidefinite Case

IF 0.9 Q3 MATHEMATICS, APPLIED
Achiya Dax
{"title":"The Rate of Convergence of the SOR Method in the Positive Semidefinite Case","authors":"Achiya Dax","doi":"10.1155/2022/6143444","DOIUrl":null,"url":null,"abstract":"<div>\n <p>In this paper, we derive upper bounds that characterize the rate of convergence of the SOR method for solving a linear system of the form <i>G</i><i>x</i> = <i>b</i>, where <i>G</i> is a real symmetric positive semidefinite <i>n</i> × <i>n</i> matrix. The bounds are given in terms of the condition number of <i>G</i>, which is the ratio <i>κ</i> = <i>α</i>/<i>β</i>, where <i>α</i> is the largest eigenvalue of <i>G</i> and <i>β</i> is the smallest nonzero eigenvalue of <i>G</i>. Let <i>H</i> denote the related iteration matrix. Then, since <i>G</i> has a zero eigenvalue, the spectral radius of <i>H</i> equals 1, and the rate of convergence is determined by the size of <i>η</i>, the largest eigenvalue of <i>H</i> whose modulus differs from 1. The bound has the form |<i>η</i>|<sup>2</sup> ≤ 1 − 1/(<i>κ</i><i>c</i>), where <i>c</i> = 2 + log<sub>2</sub><i>n</i>. The main consequence from this bound is that small condition number forces fast convergence while large condition number allows slow convergence.</p>\n </div>","PeriodicalId":100308,"journal":{"name":"Computational and Mathematical Methods","volume":"2022 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2022/6143444","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Methods","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2022/6143444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we derive upper bounds that characterize the rate of convergence of the SOR method for solving a linear system of the form Gx = b, where G is a real symmetric positive semidefinite n × n matrix. The bounds are given in terms of the condition number of G, which is the ratio κ = α/β, where α is the largest eigenvalue of G and β is the smallest nonzero eigenvalue of G. Let H denote the related iteration matrix. Then, since G has a zero eigenvalue, the spectral radius of H equals 1, and the rate of convergence is determined by the size of η, the largest eigenvalue of H whose modulus differs from 1. The bound has the form |η|2 ≤ 1 − 1/(κc), where c = 2 + log2n. The main consequence from this bound is that small condition number forces fast convergence while large condition number allows slow convergence.

正半定情况下SOR方法的收敛速度
在本文中,我们给出了描述SOR方法收敛速度的上界,用于求解形式为gx = b的线性系统。其中G是一个实对称的正半定n × n矩阵。边界用G的条件数给出,即比值κ = α / β,其中α是G的最大特征值,β是G的最小非零特征值。设H表示相关的迭代矩阵。然后,由于G的特征值为零,H的谱半径等于1,收敛速度由η的大小决定,模数不等于1的H的最大特征值。边界的形式为η 2≤1−1/ κ c;其中c = 2 + ln2n。这个界限的主要结果是,小的条件数迫使快速收敛,而大的条件数允许缓慢收敛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信