{"title":"Convergence Curve for Non-Blind Adaptive Equalizers","authors":"M. Pinchas","doi":"10.4236/JSIP.2016.71002","DOIUrl":null,"url":null,"abstract":"In this paper a closed-form approximated expression is proposed for the Intersymbol Interference (ISI) as a function of time valid during the entire stages of the non-blind adaptive deconvolution process and is suitable for the noisy, real and two independent quadrature carrier input case. The obtained expression is applicable for type of channels where the resulting ISI as a function of time can be described with an exponential model having a single time constant. Based on this new expression for the ISI as a function of time, the convergence time (or number of iteration number required for convergence) of the non-blind adaptive equalizer can be calculated. Up to now, the equalizer’s performance (convergence time and ISI as a function of time) could be obtained only via simulation when the channel coefficients were known. The new proposed expression for the ISI as a function of time is based on the knowledge of the initial ISI and channel power (which is measurable) and eliminates the need to carry out any more the above mentioned simulation. Simulation results indicate a high correlation between the simulated and calculated ISI (based on our proposed expression for the ISI as a function of time) during the whole deconvolution process for the high as well as for the low signal to noise ratio (SNR) condition.","PeriodicalId":38474,"journal":{"name":"Journal of Information Hiding and Multimedia Signal Processing","volume":"33 1","pages":"7-17"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Hiding and Multimedia Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/JSIP.2016.71002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper a closed-form approximated expression is proposed for the Intersymbol Interference (ISI) as a function of time valid during the entire stages of the non-blind adaptive deconvolution process and is suitable for the noisy, real and two independent quadrature carrier input case. The obtained expression is applicable for type of channels where the resulting ISI as a function of time can be described with an exponential model having a single time constant. Based on this new expression for the ISI as a function of time, the convergence time (or number of iteration number required for convergence) of the non-blind adaptive equalizer can be calculated. Up to now, the equalizer’s performance (convergence time and ISI as a function of time) could be obtained only via simulation when the channel coefficients were known. The new proposed expression for the ISI as a function of time is based on the knowledge of the initial ISI and channel power (which is measurable) and eliminates the need to carry out any more the above mentioned simulation. Simulation results indicate a high correlation between the simulated and calculated ISI (based on our proposed expression for the ISI as a function of time) during the whole deconvolution process for the high as well as for the low signal to noise ratio (SNR) condition.