Convergence Curve for Non-Blind Adaptive Equalizers

Q3 Computer Science
M. Pinchas
{"title":"Convergence Curve for Non-Blind Adaptive Equalizers","authors":"M. Pinchas","doi":"10.4236/JSIP.2016.71002","DOIUrl":null,"url":null,"abstract":"In this paper a closed-form approximated expression is proposed for the Intersymbol Interference (ISI) as a function of time valid during the entire stages of the non-blind adaptive deconvolution process and is suitable for the noisy, real and two independent quadrature carrier input case. The obtained expression is applicable for type of channels where the resulting ISI as a function of time can be described with an exponential model having a single time constant. Based on this new expression for the ISI as a function of time, the convergence time (or number of iteration number required for convergence) of the non-blind adaptive equalizer can be calculated. Up to now, the equalizer’s performance (convergence time and ISI as a function of time) could be obtained only via simulation when the channel coefficients were known. The new proposed expression for the ISI as a function of time is based on the knowledge of the initial ISI and channel power (which is measurable) and eliminates the need to carry out any more the above mentioned simulation. Simulation results indicate a high correlation between the simulated and calculated ISI (based on our proposed expression for the ISI as a function of time) during the whole deconvolution process for the high as well as for the low signal to noise ratio (SNR) condition.","PeriodicalId":38474,"journal":{"name":"Journal of Information Hiding and Multimedia Signal Processing","volume":"33 1","pages":"7-17"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Hiding and Multimedia Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/JSIP.2016.71002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper a closed-form approximated expression is proposed for the Intersymbol Interference (ISI) as a function of time valid during the entire stages of the non-blind adaptive deconvolution process and is suitable for the noisy, real and two independent quadrature carrier input case. The obtained expression is applicable for type of channels where the resulting ISI as a function of time can be described with an exponential model having a single time constant. Based on this new expression for the ISI as a function of time, the convergence time (or number of iteration number required for convergence) of the non-blind adaptive equalizer can be calculated. Up to now, the equalizer’s performance (convergence time and ISI as a function of time) could be obtained only via simulation when the channel coefficients were known. The new proposed expression for the ISI as a function of time is based on the knowledge of the initial ISI and channel power (which is measurable) and eliminates the need to carry out any more the above mentioned simulation. Simulation results indicate a high correlation between the simulated and calculated ISI (based on our proposed expression for the ISI as a function of time) during the whole deconvolution process for the high as well as for the low signal to noise ratio (SNR) condition.
非盲自适应均衡器的收敛曲线
本文提出了符号间干扰(ISI)在非盲自适应反褶积过程中作为时间函数的封闭近似表达式,适用于有噪声、实数和两个独立正交载波输入情况。所得表达式适用于信道类型,其中所得ISI作为时间的函数可以用具有单个时间常数的指数模型来描述。基于ISI作为时间函数的新表达式,可以计算出非盲自适应均衡器的收敛时间(或收敛所需的迭代次数)。到目前为止,均衡器的性能(收敛时间和ISI作为时间的函数)只有在信道系数已知的情况下才能通过仿真得到。新提出的ISI作为时间函数的表达式是基于初始ISI和信道功率(可测量)的知识,并且不再需要进行上述任何模拟。仿真结果表明,在高信噪比(SNR)和低信噪比(SNR)条件下,在整个反卷积过程中,模拟和计算的ISI(基于我们提出的ISI作为时间函数的表达式)之间存在高度相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信