Iterative Solution of Weighted Linear Least Squares Problems

Pub Date : 2020-07-01 DOI:10.2478/auom-2020-0019
D. Carp, C. Popa, T. Preclik, U. Rüde
{"title":"Iterative Solution of Weighted Linear Least Squares Problems","authors":"D. Carp, C. Popa, T. Preclik, U. Rüde","doi":"10.2478/auom-2020-0019","DOIUrl":null,"url":null,"abstract":"Abstract In this report we show that the iterated regularization scheme due to Riley and Golub, sometimes also called the iterated Tikhonov regularization, can be generalized to damped least squares problems where the weights matrix D is not necessarily the identity but a general symmetric and positive definite matrix. We show that the iterative scheme approaches the same point as the unique solutions of the regularized problem, when the regularization parameter goes to 0. Furthermore this point can be characterized as the solution of a weighted minimum Euclidean norm problem. Finally several numerical experiments were performed in the field of rigid multibody dynamics supporting the theoretical claims.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2478/auom-2020-0019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In this report we show that the iterated regularization scheme due to Riley and Golub, sometimes also called the iterated Tikhonov regularization, can be generalized to damped least squares problems where the weights matrix D is not necessarily the identity but a general symmetric and positive definite matrix. We show that the iterative scheme approaches the same point as the unique solutions of the regularized problem, when the regularization parameter goes to 0. Furthermore this point can be characterized as the solution of a weighted minimum Euclidean norm problem. Finally several numerical experiments were performed in the field of rigid multibody dynamics supporting the theoretical claims.
分享
查看原文
加权线性最小二乘问题的迭代解
本文证明了基于Riley和Golub的迭代正则化方案,有时也称为迭代Tikhonov正则化,可以推广到阻尼最小二乘问题,其中权重矩阵D不一定是单位矩阵,而是一般对称正定矩阵。我们证明了当正则化参数趋于0时,迭代方案与正则化问题的唯一解趋近于同一点。进一步,这一点可以表征为一个加权最小欧氏范数问题的解。最后,在刚体多体动力学领域进行了数值实验,验证了理论结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信