Feature Extraction and Classification of Hyperspectral Image Based on 3D- Convolution Neural Network

Xuefeng Liu, Qiaoqiao Sun, Y. Meng, Congcong Wang, Min Fu
{"title":"Feature Extraction and Classification of Hyperspectral Image Based on 3D- Convolution Neural Network","authors":"Xuefeng Liu, Qiaoqiao Sun, Y. Meng, Congcong Wang, Min Fu","doi":"10.1109/DDCLS.2018.8515930","DOIUrl":null,"url":null,"abstract":"Deep learning has huge potential for hyperspectral image (HSI) classification. In order to fully exploit the information in HSI and improve the classification accuracy, a new classification method based on 3D-convolutional neural network (3D-CNN) is proposed. In the meantime, virtual samples are introduced to solve the problem of insufficient samples of HSI. The experimental results show that the proposed method has a good application prospect in HSI classification.","PeriodicalId":6565,"journal":{"name":"2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS)","volume":"1 1","pages":"918-922"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDCLS.2018.8515930","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Deep learning has huge potential for hyperspectral image (HSI) classification. In order to fully exploit the information in HSI and improve the classification accuracy, a new classification method based on 3D-convolutional neural network (3D-CNN) is proposed. In the meantime, virtual samples are introduced to solve the problem of insufficient samples of HSI. The experimental results show that the proposed method has a good application prospect in HSI classification.
基于三维卷积神经网络的高光谱图像特征提取与分类
深度学习在高光谱图像(HSI)分类方面具有巨大的潜力。为了充分利用HSI中的信息,提高分类精度,提出了一种新的基于3d -卷积神经网络(3D-CNN)的分类方法。同时,为了解决HSI样本不足的问题,引入了虚拟样本。实验结果表明,该方法在HSI分类中具有良好的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信