{"title":"Powering community electrical loads in Cameroon using off-grid hybrid energy systems","authors":"D. N. Nkwetta","doi":"10.32438/ijet.1619","DOIUrl":null,"url":null,"abstract":"The millions of users in developing countries often live far off the electric grid (rural areas) which seems not very cost effective extending the national grid to these rural areas as per respective governments. Africa’s total primary energy supply has seen an increasing annual rate of about 3%, seeming to be the highest among all other continents. The African continent as a whole is endowed with large renewable energy potential, varying in type across diverse geographic locations. These resources, and the settings in which they exist, can point to country or regional specific renewable energy solutions to fit each nation’s strengths and needs. In Sub-Saharan Africa, reliable access to electric power must be consider a basic precondition to improve people’s lives as it further promote education, health care and economic growth via the creation of sustainable and clean energy jobs. Until recently, renewable energy technologies (RETs) have been confronted with a huge up-front cost and technologies in development but massive and global deployment of renewable energy systems has led to significant cost reductions and performance improvements and the hope is to see increasing uptake of RETs by African countries. Cameroon a Central African country is heavily reliant on hydropower, which contributes an estimated 60% to the country’s total installed 1,400MW capacity in 2015. In addition, there is constants power failure due to the non-reliability of the electric grid and load shedding to meet increasing demand. However, climate change poses additional huge risk (large reservoirs and dams drying up) and to meet the increasing demand, Cameroon is being forced to seek alternative power sources. This paper proposes the need for a sustainable hybrid energy system design and the development of an effective design, simulation and analysis approach of stand-alone off-grid in Cameroon as a potential optimal solution to help power community electrical loads. Finding an optimized mix of renewable energy technologies for Bandjoun and Muyuka were the goals of this paper.","PeriodicalId":35754,"journal":{"name":"International Journal of Energy Technology and Policy","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Energy Technology and Policy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32438/ijet.1619","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
The millions of users in developing countries often live far off the electric grid (rural areas) which seems not very cost effective extending the national grid to these rural areas as per respective governments. Africa’s total primary energy supply has seen an increasing annual rate of about 3%, seeming to be the highest among all other continents. The African continent as a whole is endowed with large renewable energy potential, varying in type across diverse geographic locations. These resources, and the settings in which they exist, can point to country or regional specific renewable energy solutions to fit each nation’s strengths and needs. In Sub-Saharan Africa, reliable access to electric power must be consider a basic precondition to improve people’s lives as it further promote education, health care and economic growth via the creation of sustainable and clean energy jobs. Until recently, renewable energy technologies (RETs) have been confronted with a huge up-front cost and technologies in development but massive and global deployment of renewable energy systems has led to significant cost reductions and performance improvements and the hope is to see increasing uptake of RETs by African countries. Cameroon a Central African country is heavily reliant on hydropower, which contributes an estimated 60% to the country’s total installed 1,400MW capacity in 2015. In addition, there is constants power failure due to the non-reliability of the electric grid and load shedding to meet increasing demand. However, climate change poses additional huge risk (large reservoirs and dams drying up) and to meet the increasing demand, Cameroon is being forced to seek alternative power sources. This paper proposes the need for a sustainable hybrid energy system design and the development of an effective design, simulation and analysis approach of stand-alone off-grid in Cameroon as a potential optimal solution to help power community electrical loads. Finding an optimized mix of renewable energy technologies for Bandjoun and Muyuka were the goals of this paper.