The Study of Slag Cement’s Microstructural Properties

IF 0.6 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
S. Boualleg
{"title":"The Study of Slag Cement’s Microstructural Properties","authors":"S. Boualleg","doi":"10.18280/ACSM.450204","DOIUrl":null,"url":null,"abstract":"Received: 3 December 2020 Accepted: 17 March 2021 The objective of this work is the quantification of hydration in cement. To monitor this quantity of hydrated cement \"hydration degrees\" we adopted the method of thermogravimetric analysis (TGA) which allowed us to determine the degree of hydration α(t), bound water (WB) and non-evaporable water. This study is completed by the analysis of diffractometers (DRX). Cements containing different percentages of slag. The evolution of the kinetics was studied during 3, 7 and 28 days. According to the results obtained, the hydration rate is inversely proportional to the addition content in the cement. The degree of hydration is directly related to the formation of hydrates and portlandite, more non-evaporable water retained in the hydrates corresponds to a high degree of hydration. This technique is coupled with the carbonation and strength of ordinary mortar. The experimental data obtained have been correlated and interpreted with regard to the evolution of strength and carbonation as a function of the degree of hydration, bound water and non-evaporable water of the cement hydrates. The Bhatty method is verified for the calculation of the degree of hydration and can be successfully applied for composite cements.","PeriodicalId":7897,"journal":{"name":"Annales De Chimie-science Des Materiaux","volume":"14 1","pages":"121-133"},"PeriodicalIF":0.6000,"publicationDate":"2021-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De Chimie-science Des Materiaux","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18280/ACSM.450204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Received: 3 December 2020 Accepted: 17 March 2021 The objective of this work is the quantification of hydration in cement. To monitor this quantity of hydrated cement "hydration degrees" we adopted the method of thermogravimetric analysis (TGA) which allowed us to determine the degree of hydration α(t), bound water (WB) and non-evaporable water. This study is completed by the analysis of diffractometers (DRX). Cements containing different percentages of slag. The evolution of the kinetics was studied during 3, 7 and 28 days. According to the results obtained, the hydration rate is inversely proportional to the addition content in the cement. The degree of hydration is directly related to the formation of hydrates and portlandite, more non-evaporable water retained in the hydrates corresponds to a high degree of hydration. This technique is coupled with the carbonation and strength of ordinary mortar. The experimental data obtained have been correlated and interpreted with regard to the evolution of strength and carbonation as a function of the degree of hydration, bound water and non-evaporable water of the cement hydrates. The Bhatty method is verified for the calculation of the degree of hydration and can be successfully applied for composite cements.
矿渣水泥微观结构性能研究
接收日期:2020年12月3日接收日期:2021年3月17日本研究的目的是量化水泥中的水化。为了监测水化水泥的“水化度”,我们采用热重分析(TGA)的方法来测定水化程度α(t)、结合水(WB)和不可蒸发水。本研究是通过衍射仪(DRX)分析完成的。含不同比例矿渣的水泥。研究了3、7和28 d的动力学演变。结果表明,水化速率与水泥中掺量成反比。水化程度直接关系到水合物和硅酸盐的形成,水合物中保留的不可蒸发水越多,对应的水化程度越高。这种技术与普通砂浆的碳化和强度相结合。所获得的实验数据与水泥水合物的水化程度、结合水和不可蒸发水的函数强度和碳化的演变进行了关联和解释。验证了Bhatty法计算水化度的正确性,可以成功地应用于复合水泥。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annales De Chimie-science Des Materiaux
Annales De Chimie-science Des Materiaux 工程技术-材料科学:综合
CiteScore
1.70
自引率
25.00%
发文量
33
审稿时长
>12 weeks
期刊介绍: The ACSM is concerning the cutting-edge innovations in solid material science. The journal covers a broad spectrum of scientific fields, ranging all the way from metallurgy, semiconductors, solid mineral compounds, organic macromolecular compounds to composite materials. The editorial board encourages the submission of original papers that deal with all aspects of material science, including but not limited to synthesis and processing, property characterization, reactivity and reaction kinetics, evolution in service, and recycling. The papers should provide new insights into solid materials and make a significant original contribution to knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信