{"title":"EFRing: Enabling Thumb-to-Index-Finger Microgesture Interaction through Electric Field Sensing Using Single Smart Ring","authors":"Taizhou Chen, Tianpei Li, Xingyu Yang, Kening Zhu","doi":"10.1145/3569478","DOIUrl":null,"url":null,"abstract":"We present EFRing, an index-finger-worn ring-form device for detecting thumb-to-index-finger (T2I) microgestures through the approach of electric-field (EF) sensing. Based on the signal change induced by the T2I motions, we proposed two machine-learning-based data-processing pipelines: one for recognizing/classifying discrete T2I microgestures, and the other for tracking continuous 1D T2I movements. Our experiments on the EFRing microgesture classification showed an average within-user accuracy of 89.5% and an average cross-user accuracy of 85.2%, for 9 discrete T2I microgestures. For the continuous tracking of 1D T2I movements, our method can achieve the mean-square error of 3.5% for the generic model and 2.3% for the personalized model. Our 1D-Fitts’-Law target-selection study shows that the proposed tracking method with EFRing is intuitive and accurate for real-time usage. Lastly, we proposed and discussed the potential applications for EFRing.","PeriodicalId":20463,"journal":{"name":"Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.","volume":"20 1","pages":"161:1-161:31"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3569478","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
We present EFRing, an index-finger-worn ring-form device for detecting thumb-to-index-finger (T2I) microgestures through the approach of electric-field (EF) sensing. Based on the signal change induced by the T2I motions, we proposed two machine-learning-based data-processing pipelines: one for recognizing/classifying discrete T2I microgestures, and the other for tracking continuous 1D T2I movements. Our experiments on the EFRing microgesture classification showed an average within-user accuracy of 89.5% and an average cross-user accuracy of 85.2%, for 9 discrete T2I microgestures. For the continuous tracking of 1D T2I movements, our method can achieve the mean-square error of 3.5% for the generic model and 2.3% for the personalized model. Our 1D-Fitts’-Law target-selection study shows that the proposed tracking method with EFRing is intuitive and accurate for real-time usage. Lastly, we proposed and discussed the potential applications for EFRing.