Resource Efficient Pre-processor for Drift Removal in Neurochemical Signals

Tahmid Ahmed, K. B. Mirza, K. Nikolic
{"title":"Resource Efficient Pre-processor for Drift Removal in Neurochemical Signals","authors":"Tahmid Ahmed, K. B. Mirza, K. Nikolic","doi":"10.1109/ISCAS.2018.8351424","DOIUrl":null,"url":null,"abstract":"A necessary requirement for chemometric platforms is pre-processing of the acquired chemical signals to remove baseline drift in the signal. The drift could originate from sensor characteristics or from background chemical activity in the surrounding environment. A recent emerging field is neurochemical monitoring to detect and quantify neural activity. In this paper, a resource efficient pre-processing system is presented to remove drift from the acquired neurochemical signal. The drift removal technique is based on baseline manipulation without requiring window based processing. The target application, for demonstration purposes, is the recording of vagal pH signals to enable closed-loop Vagus Nerve Stimulation (VNS). The final design is multiplier-free and results in an Application Specific Integrated Circuit (ASIC) that is 640 μm by 625 μm in area.","PeriodicalId":6569,"journal":{"name":"2018 IEEE International Symposium on Circuits and Systems (ISCAS)","volume":"31 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Symposium on Circuits and Systems (ISCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS.2018.8351424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

A necessary requirement for chemometric platforms is pre-processing of the acquired chemical signals to remove baseline drift in the signal. The drift could originate from sensor characteristics or from background chemical activity in the surrounding environment. A recent emerging field is neurochemical monitoring to detect and quantify neural activity. In this paper, a resource efficient pre-processing system is presented to remove drift from the acquired neurochemical signal. The drift removal technique is based on baseline manipulation without requiring window based processing. The target application, for demonstration purposes, is the recording of vagal pH signals to enable closed-loop Vagus Nerve Stimulation (VNS). The final design is multiplier-free and results in an Application Specific Integrated Circuit (ASIC) that is 640 μm by 625 μm in area.
资源高效的神经化学信号漂移去除预处理器
化学测量平台的一个必要要求是对采集的化学信号进行预处理,以消除信号中的基线漂移。漂移可能源于传感器特性或周围环境中的背景化学活动。最近出现的一个领域是神经化学监测,以检测和量化神经活动。本文提出了一种资源高效的预处理系统来消除采集到的神经化学信号的漂移。漂移去除技术是基于基线操作而不需要基于窗口的处理。为了演示目的,目标应用是记录迷走神经pH信号,以实现闭环迷走神经刺激(VNS)。最终的设计是无乘法器的,并产生了面积为640 μm × 625 μm的专用集成电路(ASIC)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信