Coarse graining and large-$N$ behavior of the $d$-dimensional $N$-clock model

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
M. Cicalese, G. Orlando, M. Ruf
{"title":"Coarse graining and large-$N$ behavior of the $d$-dimensional $N$-clock model","authors":"M. Cicalese, G. Orlando, M. Ruf","doi":"10.4171/ifb/456","DOIUrl":null,"url":null,"abstract":"We study the asymptotic behavior of the $N$-clock model, a nearest neighbors ferromagnetic spin model on the $d$-dimensional cubic $\\varepsilon$-lattice in which the spin field is constrained to take values in a discretization $\\mathcal{S}_N$ of the unit circle~$\\mathbb{S}^{1}$ consisting of $N$ equispaced points. Our $\\Gamma$-convergence analysis consists of two steps: we first fix $N$ and let the lattice spacing $\\varepsilon \\to 0$, obtaining an interface energy in the continuum defined on piecewise constant spin fields with values in $\\mathcal{S}_N$; at a second stage, we let $N \\to +\\infty$. The final result of this two-step limit process is an anisotropic total variation of $\\mathbb{S}^1$-valued vector fields of bounded variation.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/ifb/456","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 7

Abstract

We study the asymptotic behavior of the $N$-clock model, a nearest neighbors ferromagnetic spin model on the $d$-dimensional cubic $\varepsilon$-lattice in which the spin field is constrained to take values in a discretization $\mathcal{S}_N$ of the unit circle~$\mathbb{S}^{1}$ consisting of $N$ equispaced points. Our $\Gamma$-convergence analysis consists of two steps: we first fix $N$ and let the lattice spacing $\varepsilon \to 0$, obtaining an interface energy in the continuum defined on piecewise constant spin fields with values in $\mathcal{S}_N$; at a second stage, we let $N \to +\infty$. The final result of this two-step limit process is an anisotropic total variation of $\mathbb{S}^1$-valued vector fields of bounded variation.
d维N时钟模型的粗粒度和大N行为
我们研究了$N$ -时钟模型的渐近行为,这是一个在$d$维立方$\varepsilon$ -晶格上的最近邻铁磁自旋模型,其中自旋场被约束为在由$N$等距点组成的单位圆$\mathbb{S}^{1}$的离散化$\mathcal{S}_N$中取值。我们的$\Gamma$ -收敛分析包括两个步骤:首先,我们固定$N$并让晶格间距$\varepsilon \to 0$,得到在分段恒定自旋场上定义的连续统中的界面能量,其值为$\mathcal{S}_N$;在第二阶段,我们让$N \to +\infty$。这两步极限过程的最终结果是有界变化的$\mathbb{S}^1$值向量场的各向异性总变分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信