Voting Based System for Robust 3D Hand Pose Estimation and Tracking

Mohammad Asif, Andreas Daasch, Hendrik Unger, M. Schultalbers
{"title":"Voting Based System for Robust 3D Hand Pose Estimation and Tracking","authors":"Mohammad Asif, Andreas Daasch, Hendrik Unger, M. Schultalbers","doi":"10.1109/ICAR46387.2019.8981614","DOIUrl":null,"url":null,"abstract":"Low cost depth cameras and advancements in the field of deep learning have paved the way to precisely estimate 3D hand pose using a single depth camera. However, to accurately estimate the pose one has to detect the hands in the scene and track them over consecutive frames. In this paper, we propose a voting based system to track and estimate the 3D pose of a human hand. Based upon Robot Operating System (ROS), it comprises a hand segmentation stage, a clustering stage, a voting stage, a validation stage and a pose estimation stage. The final output is the 3D pose which is then used by a robot to follow the human hand.","PeriodicalId":6606,"journal":{"name":"2019 19th International Conference on Advanced Robotics (ICAR)","volume":"1 1","pages":"248-253"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 19th International Conference on Advanced Robotics (ICAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAR46387.2019.8981614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Low cost depth cameras and advancements in the field of deep learning have paved the way to precisely estimate 3D hand pose using a single depth camera. However, to accurately estimate the pose one has to detect the hands in the scene and track them over consecutive frames. In this paper, we propose a voting based system to track and estimate the 3D pose of a human hand. Based upon Robot Operating System (ROS), it comprises a hand segmentation stage, a clustering stage, a voting stage, a validation stage and a pose estimation stage. The final output is the 3D pose which is then used by a robot to follow the human hand.
基于投票的三维手部姿态估计与跟踪系统
低成本深度相机和深度学习领域的进步为使用单个深度相机精确估计3D手部姿势铺平了道路。然而,为了准确地估计姿态,必须检测场景中的手,并在连续的帧中跟踪它们。在本文中,我们提出了一个基于投票的系统来跟踪和估计人手的三维姿态。该算法基于机器人操作系统(ROS),包括手分割阶段、聚类阶段、投票阶段、验证阶段和姿态估计阶段。最后的输出是3D姿态,然后机器人使用它来跟随人手。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信