Stable linear multistep methods with off-step points for the solution of ordinary differential equations
Q4 Mathematics
I. Esuabana, S. E. Ekoro, U. Abasiekwere, E. Ekpenyong, T. O. Ogumbe
{"title":"Stable linear multistep methods with off-step points for the solution of ordinary differential equations","authors":"I. Esuabana, S. E. Ekoro, U. Abasiekwere, E. Ekpenyong, T. O. Ogumbe","doi":"10.28919/jmcs/6656","DOIUrl":null,"url":null,"abstract":"STABLE LINEAR MULTISTEP METHODS WITH OFF-STEP POINTS FOR THE SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS I. M. ESUABANA, S. E. EKORO, U. A. ABASIEKWERE, E. O. EKPENYONG, T. O. OGUMBE Department of Mathematics, University of Calabar, P.M.B. 1115, Calabar, Cross River State, Nigeria Department of Mathematics, University of Uyo, P.M.B. 1017, Uyo, Akwa Ibom State, Nigeria Copyright © 2022 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract: Of recent, stability has become an important concept and a qualitative property in any numerical integration scheme. In this work, we propose two stable linear multistep methods with off-step points for the numerical integration","PeriodicalId":36607,"journal":{"name":"Journal of Mathematical and Computational Science","volume":"68 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical and Computational Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28919/jmcs/6656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
STABLE LINEAR MULTISTEP METHODS WITH OFF-STEP POINTS FOR THE SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS I. M. ESUABANA, S. E. EKORO, U. A. ABASIEKWERE, E. O. EKPENYONG, T. O. OGUMBE Department of Mathematics, University of Calabar, P.M.B. 1115, Calabar, Cross River State, Nigeria Department of Mathematics, University of Uyo, P.M.B. 1017, Uyo, Akwa Ibom State, Nigeria Copyright © 2022 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract: Of recent, stability has become an important concept and a qualitative property in any numerical integration scheme. In this work, we propose two stable linear multistep methods with off-step points for the numerical integration
常微分方程解的带离步点的稳定线性多步方法
带离步点的常微分方程解的稳定线性多步方法I. M. ESUABANA, s . E. EKORO, U. A. ABASIEKWERE, E. O. EKPENYONG, T. O. OGUMBE卡拉巴尔大学数学系,P.M.B. 1115,尼日利亚卡拉巴尔,克罗斯河州,尼日利亚乌约大学数学系,P.M.B. 1017,尼日利亚阿克瓦伊博姆州乌约版权©2022作者。这是一篇在知识共享署名许可下发布的开放获取文章,该许可允许在任何媒体上不受限制地使用、分发和复制,只要原始作品被适当引用。摘要:近年来,稳定性已成为数值积分格式中的一个重要概念和定性性质。本文提出了两种稳定的带离步点的线性多步数值积分方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。