Stable linear multistep methods with off-step points for the solution of ordinary differential equations

Q4 Mathematics
I. Esuabana, S. E. Ekoro, U. Abasiekwere, E. Ekpenyong, T. O. Ogumbe
{"title":"Stable linear multistep methods with off-step points for the solution of ordinary differential equations","authors":"I. Esuabana, S. E. Ekoro, U. Abasiekwere, E. Ekpenyong, T. O. Ogumbe","doi":"10.28919/jmcs/6656","DOIUrl":null,"url":null,"abstract":"STABLE LINEAR MULTISTEP METHODS WITH OFF-STEP POINTS FOR THE SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS I. M. ESUABANA, S. E. EKORO, U. A. ABASIEKWERE, E. O. EKPENYONG, T. O. OGUMBE Department of Mathematics, University of Calabar, P.M.B. 1115, Calabar, Cross River State, Nigeria Department of Mathematics, University of Uyo, P.M.B. 1017, Uyo, Akwa Ibom State, Nigeria Copyright © 2022 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract: Of recent, stability has become an important concept and a qualitative property in any numerical integration scheme. In this work, we propose two stable linear multistep methods with off-step points for the numerical integration","PeriodicalId":36607,"journal":{"name":"Journal of Mathematical and Computational Science","volume":"68 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical and Computational Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28919/jmcs/6656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

STABLE LINEAR MULTISTEP METHODS WITH OFF-STEP POINTS FOR THE SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS I. M. ESUABANA, S. E. EKORO, U. A. ABASIEKWERE, E. O. EKPENYONG, T. O. OGUMBE Department of Mathematics, University of Calabar, P.M.B. 1115, Calabar, Cross River State, Nigeria Department of Mathematics, University of Uyo, P.M.B. 1017, Uyo, Akwa Ibom State, Nigeria Copyright © 2022 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract: Of recent, stability has become an important concept and a qualitative property in any numerical integration scheme. In this work, we propose two stable linear multistep methods with off-step points for the numerical integration
常微分方程解的带离步点的稳定线性多步方法
带离步点的常微分方程解的稳定线性多步方法I. M. ESUABANA, s . E. EKORO, U. A. ABASIEKWERE, E. O. EKPENYONG, T. O. OGUMBE卡拉巴尔大学数学系,P.M.B. 1115,尼日利亚卡拉巴尔,克罗斯河州,尼日利亚乌约大学数学系,P.M.B. 1017,尼日利亚阿克瓦伊博姆州乌约版权©2022作者。这是一篇在知识共享署名许可下发布的开放获取文章,该许可允许在任何媒体上不受限制地使用、分发和复制,只要原始作品被适当引用。摘要:近年来,稳定性已成为数值积分格式中的一个重要概念和定性性质。本文提出了两种稳定的带离步点的线性多步数值积分方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
158
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信