Polycrystal thermo-elasticity revisited: theory and applications

IF 1 4区 工程技术 Q4 MECHANICS
C. Tomé, R. Lebensohn
{"title":"Polycrystal thermo-elasticity revisited: theory and applications","authors":"C. Tomé, R. Lebensohn","doi":"10.5802/crmeca.18","DOIUrl":null,"url":null,"abstract":"The self-consistent (SC) theory is the most commonly used mean-field homogenization method to estimate the mechanical response behavior of polycrystals based on the knowledge of the properties and orientation distribution of constituent single-crystal grains. The original elastic SC method can be extended to thermo-elasticity by adding a stress-free strain to an elastic constitutive relation that expresses stress as a linear function of strain. With the addition of this independent term, the problem remains linear. Although the thermo-elastic self-consistent (TESC) model has important theoretical implications for the development of self-consistent homogenization of non-linear polycrystals, in this paper, we focus on TESC applications to actual thermo-elastic problems involving non-cubic (i.e. thermally anisotropic) materials. To achieve this aim, we provide a thorough description of the TESC theory, which is followed by illustrative examples involving cooling of polycrystalline non-cubic metals. The TESC model allows studying the effect of crystallographic texture and single-crystal elastic and thermal anisotropy on the effective thermo-elastic response of the aggregate and on the internal stresses that develop at the local level.","PeriodicalId":50997,"journal":{"name":"Comptes Rendus Mecanique","volume":"42 1","pages":"1-15"},"PeriodicalIF":1.0000,"publicationDate":"2020-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus Mecanique","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5802/crmeca.18","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 2

Abstract

The self-consistent (SC) theory is the most commonly used mean-field homogenization method to estimate the mechanical response behavior of polycrystals based on the knowledge of the properties and orientation distribution of constituent single-crystal grains. The original elastic SC method can be extended to thermo-elasticity by adding a stress-free strain to an elastic constitutive relation that expresses stress as a linear function of strain. With the addition of this independent term, the problem remains linear. Although the thermo-elastic self-consistent (TESC) model has important theoretical implications for the development of self-consistent homogenization of non-linear polycrystals, in this paper, we focus on TESC applications to actual thermo-elastic problems involving non-cubic (i.e. thermally anisotropic) materials. To achieve this aim, we provide a thorough description of the TESC theory, which is followed by illustrative examples involving cooling of polycrystalline non-cubic metals. The TESC model allows studying the effect of crystallographic texture and single-crystal elastic and thermal anisotropy on the effective thermo-elastic response of the aggregate and on the internal stresses that develop at the local level.
再论多晶热弹性:理论与应用
自洽理论是一种常用的平均场均匀化方法,它基于单晶晶粒的性质和取向分布来估计多晶的力学响应行为。通过在表示应力为应变的线性函数的弹性本构关系中加入无应力应变,可以将原来的弹性SC方法扩展为热弹性方法。加上这个独立项后,问题仍然是线性的。尽管热弹性自洽(TESC)模型对于发展非线性多晶的自洽均质化具有重要的理论意义,但在本文中,我们将重点关注TESC在涉及非立方(即热各向异性)材料的实际热弹性问题中的应用。为了实现这一目标,我们提供了TESC理论的全面描述,随后是涉及多晶非立方金属冷却的说白了的例子。TESC模型允许研究晶体织构、单晶弹性和热各向异性对聚集体有效热弹性响应和局部内应力的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Comptes Rendus Mecanique
Comptes Rendus Mecanique 物理-力学
CiteScore
1.40
自引率
0.00%
发文量
0
审稿时长
12 months
期刊介绍: The Comptes rendus - Mécanique cover all fields of the discipline: Logic, Combinatorics, Number Theory, Group Theory, Mathematical Analysis, (Partial) Differential Equations, Geometry, Topology, Dynamical systems, Mathematical Physics, Mathematical Problems in Mechanics, Signal Theory, Mathematical Economics, … The journal publishes original and high-quality research articles. These can be in either in English or in French, with an abstract in both languages. An abridged version of the main text in the second language may also be included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信