Semantic Embeddings for Medical Providers and Fraud Detection

Justin M. Johnson, T. Khoshgoftaar
{"title":"Semantic Embeddings for Medical Providers and Fraud Detection","authors":"Justin M. Johnson, T. Khoshgoftaar","doi":"10.1109/IRI49571.2020.00039","DOIUrl":null,"url":null,"abstract":"A medical provider’s specialty is a significant predictor for detecting fraudulent providers with machine learning algorithms. When the specialty variable is encoded using a one-hot representation, however, models are subjected to sparse and uninformative feature vectors. We explore three techniques for representing medical provider types with dense, semantic embeddings that capture specialty similarities. The first two methods (GloVe and Med-Word2Vec) use pre-trained word embeddings to convert provider specialty descriptions to short phrase embeddings. Next, we propose a method for constructing semantic provider type embeddings from the procedure-level activity within each specialty group. For each embedding technique, we use Principal Component Analysis to compare the performance of embedding sizes between 32-128. Each embedding technique is evaluated on a highly imbalanced Medicare fraud prediction task using Logistic Regression (LR), Random Forest (RF), Gradient Boosted Tree (GBT), and Multilayer Perceptron (MLP) learners. Experiments are repeated 30 times and confidence intervals show that all three semantic embeddings significantly outperform one-hot representations when using RF and GBT learners. Our contributions include a novel method for embedding medical specialties from procedure codes and a comparison of three semantic embedding techniques for Medicare fraud detection.","PeriodicalId":93159,"journal":{"name":"2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science : IRI 2020 : proceedings : virtual conference, 11-13 August 2020. IEEE International Conference on Information Reuse and Integration (21st : 2...","volume":"42 1","pages":"224-230"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science : IRI 2020 : proceedings : virtual conference, 11-13 August 2020. IEEE International Conference on Information Reuse and Integration (21st : 2...","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI49571.2020.00039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

A medical provider’s specialty is a significant predictor for detecting fraudulent providers with machine learning algorithms. When the specialty variable is encoded using a one-hot representation, however, models are subjected to sparse and uninformative feature vectors. We explore three techniques for representing medical provider types with dense, semantic embeddings that capture specialty similarities. The first two methods (GloVe and Med-Word2Vec) use pre-trained word embeddings to convert provider specialty descriptions to short phrase embeddings. Next, we propose a method for constructing semantic provider type embeddings from the procedure-level activity within each specialty group. For each embedding technique, we use Principal Component Analysis to compare the performance of embedding sizes between 32-128. Each embedding technique is evaluated on a highly imbalanced Medicare fraud prediction task using Logistic Regression (LR), Random Forest (RF), Gradient Boosted Tree (GBT), and Multilayer Perceptron (MLP) learners. Experiments are repeated 30 times and confidence intervals show that all three semantic embeddings significantly outperform one-hot representations when using RF and GBT learners. Our contributions include a novel method for embedding medical specialties from procedure codes and a comparison of three semantic embedding techniques for Medicare fraud detection.
医疗服务提供者的语义嵌入和欺诈检测
医疗服务提供者的专业是使用机器学习算法检测欺诈性提供者的重要预测因素。然而,当使用单热表示对专业变量进行编码时,模型受到稀疏和无信息的特征向量的影响。我们探索了三种技术,用密集的语义嵌入来表示医疗提供者类型,以捕获专业相似性。前两种方法(GloVe和Med-Word2Vec)使用预训练的词嵌入将提供者专业描述转换为短短语嵌入。接下来,我们提出了一种从每个专业组内的过程级活动构造语义提供者类型嵌入的方法。对于每种嵌入技术,我们使用主成分分析来比较32-128之间嵌入尺寸的性能。每个嵌入技术在高度不平衡的医疗保险欺诈预测任务上进行评估,使用逻辑回归(LR)、随机森林(RF)、梯度提升树(GBT)和多层感知器(MLP)学习器。实验重复了30次,置信区间表明,当使用RF和GBT学习器时,所有三种语义嵌入都明显优于单热表示。我们的贡献包括一种从程序代码中嵌入医学专业的新方法,以及三种用于医疗保险欺诈检测的语义嵌入技术的比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信