A. Rodríguez-Illamola, J. Mı́guez, J. Coimbra, JM Wilson
{"title":"High hydrostatic pressure effects on arginine vasotocin levels in fish","authors":"A. Rodríguez-Illamola, J. Mı́guez, J. Coimbra, JM Wilson","doi":"10.3354/ab00734","DOIUrl":null,"url":null,"abstract":"The present study investigates the response of the hormone arginine vasotocin (AVT), the non-mammalian antidiuretic hormone, to the acclimation of fish to high hydrostatic pressure (5.1 MPa). Two fish species with different osmoregulatory strategies, the lesser spotted dogfish Scyliorhinus canicula, a marine osmoconforming chondrichthyan species adapted for migration to deep waters, and the rainbow trout Oncorhynchus mykiss, a pressuresensitive freshwater species, were selected for study. Fish were exposed to hydrostatic pressures of either 0.1 (control) or 5.1 MPa in hydrostatic chambers for up to 2 wk at their appropriate salinities. Plasma cortisol was measured in trout, and plasma chloride, sodium and potassium were measured in both fish species. A transient high level of plasma AVT was found in dogfish and in trout after 1 and 3 d of exposure to high hydrostatic pressure, which returned to basal levels by 14 d of exposure. In contrast, pituitary AVT content was reduced after shortterm exposure in dogfish, while in trout, lower expression was found in high pressure than in control conditions, independently of exposure time. In dogfish, pituitary AVT levels recovered by 14 d under high hydrostatic pressure. No changes in plasma cortisol (trout) or ions (both species) were observed. These initial increases of the AVT release from the pituitary during fish acclimation to high pressure suggest that it works as a physiological short-term response to reduce water loss and equilibrate ion osmotic balance.","PeriodicalId":8111,"journal":{"name":"Aquatic Biology","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2020-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3354/ab00734","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The present study investigates the response of the hormone arginine vasotocin (AVT), the non-mammalian antidiuretic hormone, to the acclimation of fish to high hydrostatic pressure (5.1 MPa). Two fish species with different osmoregulatory strategies, the lesser spotted dogfish Scyliorhinus canicula, a marine osmoconforming chondrichthyan species adapted for migration to deep waters, and the rainbow trout Oncorhynchus mykiss, a pressuresensitive freshwater species, were selected for study. Fish were exposed to hydrostatic pressures of either 0.1 (control) or 5.1 MPa in hydrostatic chambers for up to 2 wk at their appropriate salinities. Plasma cortisol was measured in trout, and plasma chloride, sodium and potassium were measured in both fish species. A transient high level of plasma AVT was found in dogfish and in trout after 1 and 3 d of exposure to high hydrostatic pressure, which returned to basal levels by 14 d of exposure. In contrast, pituitary AVT content was reduced after shortterm exposure in dogfish, while in trout, lower expression was found in high pressure than in control conditions, independently of exposure time. In dogfish, pituitary AVT levels recovered by 14 d under high hydrostatic pressure. No changes in plasma cortisol (trout) or ions (both species) were observed. These initial increases of the AVT release from the pituitary during fish acclimation to high pressure suggest that it works as a physiological short-term response to reduce water loss and equilibrate ion osmotic balance.
期刊介绍:
AB publishes rigorously refereed and carefully selected Feature Articles, Research Articles, Reviews and Notes, as well as Comments/Reply Comments (for details see MEPS 228:1), Theme Sections, Opinion Pieces (previously called ''As I See It'') (for details consult the Guidelines for Authors) concerned with the biology, physiology, biochemistry and genetics (including the ’omics‘) of all aquatic organisms under laboratory and field conditions, and at all levels of organisation and investigation. Areas covered include:
-Biological aspects of biota: Evolution and speciation; life histories; biodiversity, biogeography and phylogeography; population genetics; biological connectedness between marine and freshwater biota; paleobiology of aquatic environments; invasive species.
-Biochemical and physiological aspects of aquatic life; synthesis and conversion of organic matter (mechanisms of auto- and heterotrophy, digestion, respiration, nutrition); thermo-, ion, osmo- and volume-regulation; stress and stress resistance; metabolism and energy budgets; non-genetic and genetic adaptation.
-Species interactions: Environment–organism and organism–organism interrelationships; predation: defenses (physical and chemical); symbioses.
-Molecular biology of aquatic life.
-Behavior: Orientation in space and time; migrations; feeding and reproductive behavior; agonistic behavior.
-Toxicology and water-quality effects on organisms; anthropogenic impacts on aquatic biota (e.g. pollution, fisheries); stream regulation and restoration.
-Theoretical biology: mathematical modelling of biological processes and species interactions.
-Methodology and equipment employed in aquatic biological research; underwater exploration and experimentation.
-Exploitation of aquatic biota: Fisheries; cultivation of aquatic organisms: use, management, protection and conservation of living aquatic resources.
-Reproduction and development in marine, brackish and freshwater organisms