An Automatic Object Retrieval Framework for Complex Background

Yimin Yang, Fausto Fleites, Haohong Wang, Shu‐Ching Chen
{"title":"An Automatic Object Retrieval Framework for Complex Background","authors":"Yimin Yang, Fausto Fleites, Haohong Wang, Shu‐Ching Chen","doi":"10.1109/ISM.2013.71","DOIUrl":null,"url":null,"abstract":"In this paper we propose a novel framework for object retrieval based on automatic foreground object extraction and multi-layer information integration. Specifically, user interested objects are firstly detected from unconstrained videos via a multimodal cues method, then an automatic object extraction algorithm based on Grab Cut is applied to separate foreground object from background. The object-level information is enhanced during the feature extraction layer by assigning different weights to foreground and background pixels respectively, and the spatial color and texture information is integrated during the similarity calculation layer. Experimental results on both benchmark data set and real-world data set demonstrate the effectiveness of the proposed framework.","PeriodicalId":6311,"journal":{"name":"2013 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB)","volume":"1 1","pages":"374-377"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISM.2013.71","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper we propose a novel framework for object retrieval based on automatic foreground object extraction and multi-layer information integration. Specifically, user interested objects are firstly detected from unconstrained videos via a multimodal cues method, then an automatic object extraction algorithm based on Grab Cut is applied to separate foreground object from background. The object-level information is enhanced during the feature extraction layer by assigning different weights to foreground and background pixels respectively, and the spatial color and texture information is integrated during the similarity calculation layer. Experimental results on both benchmark data set and real-world data set demonstrate the effectiveness of the proposed framework.
复杂背景下的自动对象检索框架
本文提出了一种基于前景目标自动提取和多层信息集成的目标检索框架。具体而言,首先通过多模态线索方法从无约束视频中检测用户感兴趣的对象,然后应用基于Grab Cut的自动对象提取算法分离前景对象和背景对象。在特征提取层中,通过对前景和背景像素分别赋予不同的权重来增强对象级信息,在相似度计算层中集成空间颜色和纹理信息。在基准数据集和实际数据集上的实验结果表明了该框架的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信