A Robust High-Dimensional Estimation of Multinomial Mixture Models

IF 1 Q3 Mathematics
Azam Sabbaghi, F. Eskandari, Hamid Reza Navabpoor
{"title":"A Robust High-Dimensional Estimation of Multinomial Mixture Models","authors":"Azam Sabbaghi, F. Eskandari, Hamid Reza Navabpoor","doi":"10.2991/JSTA.D.210126.001","DOIUrl":null,"url":null,"abstract":"In this paper, we are concerned with a robustifying high-dimensional (RHD) structured estimation in finite mixture of multinomial models. This method has been used in many applications that often involve outliers and data corruption. Thus, we introduce a class of the multinomial logistic mixture models for dependent variables having two or more discrete categorical levels. Through the optimization with the expectation maximization (EM) algorithm, we study two distinct ways to overcome sparsity in finite mixture of the multinomial logistic model; i.e., in the parameter space, or in the output space. It is shown that the new method is consistent for RHD structured estimation. Finally, we will implement the proposed method on real data.","PeriodicalId":45080,"journal":{"name":"Journal of Statistical Theory and Applications","volume":"28 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2991/JSTA.D.210126.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we are concerned with a robustifying high-dimensional (RHD) structured estimation in finite mixture of multinomial models. This method has been used in many applications that often involve outliers and data corruption. Thus, we introduce a class of the multinomial logistic mixture models for dependent variables having two or more discrete categorical levels. Through the optimization with the expectation maximization (EM) algorithm, we study two distinct ways to overcome sparsity in finite mixture of the multinomial logistic model; i.e., in the parameter space, or in the output space. It is shown that the new method is consistent for RHD structured estimation. Finally, we will implement the proposed method on real data.
多项混合模型的高维鲁棒估计
本文研究有限混合多项式模型下的高维结构估计的鲁棒性问题。该方法已用于许多经常涉及异常值和数据损坏的应用程序中。因此,我们引入了一类具有两个或多个离散分类水平的因变量的多项逻辑混合模型。通过期望最大化优化算法,研究了克服有限混合多项式逻辑模型稀疏性的两种不同方法;即在参数空间中,或在输出空间中。结果表明,新方法对RHD结构估计是一致的。最后,我们将在实际数据上实现所提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
13
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信