{"title":"Effect of Ag doping on electrical properties Ge2Sb2Te5 thin films","authors":"N. Kanda, A. Thakur, Abhinav Pratap Singh","doi":"10.1063/1.5113099","DOIUrl":null,"url":null,"abstract":"In this work thin films of the phase change material Ge2Sb2Te5 (GST), pure and Ag-doped, were studied. These films were prepared by thermal evaporation method. Amorphous nature of both pure and Ag-doped GST thin films has been confirmed from X-ray diffraction analysis. Raman spectra confirms the host structure of GST which is confirmed by the two sharp peaks at 126.4 cm−1 and 144.9 cm−1 for GST thin films. The hole concentration was found to increase by three orders of magnitude due to Ag doping, as measured by Hall measurements. I-V measurements of the samples show thermal switching at moderate voltage as large current flows through Ag-doped GST. The increase in conductivity was attributed to the crystallization of the films due to heating caused by the large electric current for I-V measurements.In this work thin films of the phase change material Ge2Sb2Te5 (GST), pure and Ag-doped, were studied. These films were prepared by thermal evaporation method. Amorphous nature of both pure and Ag-doped GST thin films has been confirmed from X-ray diffraction analysis. Raman spectra confirms the host structure of GST which is confirmed by the two sharp peaks at 126.4 cm−1 and 144.9 cm−1 for GST thin films. The hole concentration was found to increase by three orders of magnitude due to Ag doping, as measured by Hall measurements. I-V measurements of the samples show thermal switching at moderate voltage as large current flows through Ag-doped GST. The increase in conductivity was attributed to the crystallization of the films due to heating caused by the large electric current for I-V measurements.","PeriodicalId":10874,"journal":{"name":"DAE SOLID STATE PHYSICS SYMPOSIUM 2018","volume":"285 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DAE SOLID STATE PHYSICS SYMPOSIUM 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.5113099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this work thin films of the phase change material Ge2Sb2Te5 (GST), pure and Ag-doped, were studied. These films were prepared by thermal evaporation method. Amorphous nature of both pure and Ag-doped GST thin films has been confirmed from X-ray diffraction analysis. Raman spectra confirms the host structure of GST which is confirmed by the two sharp peaks at 126.4 cm−1 and 144.9 cm−1 for GST thin films. The hole concentration was found to increase by three orders of magnitude due to Ag doping, as measured by Hall measurements. I-V measurements of the samples show thermal switching at moderate voltage as large current flows through Ag-doped GST. The increase in conductivity was attributed to the crystallization of the films due to heating caused by the large electric current for I-V measurements.In this work thin films of the phase change material Ge2Sb2Te5 (GST), pure and Ag-doped, were studied. These films were prepared by thermal evaporation method. Amorphous nature of both pure and Ag-doped GST thin films has been confirmed from X-ray diffraction analysis. Raman spectra confirms the host structure of GST which is confirmed by the two sharp peaks at 126.4 cm−1 and 144.9 cm−1 for GST thin films. The hole concentration was found to increase by three orders of magnitude due to Ag doping, as measured by Hall measurements. I-V measurements of the samples show thermal switching at moderate voltage as large current flows through Ag-doped GST. The increase in conductivity was attributed to the crystallization of the films due to heating caused by the large electric current for I-V measurements.