A Bayesian Dynamic Model for Incomplete Preferences with No-Choice Options in Conjoint Analysis

R. Igari, Makito Takeuchi
{"title":"A Bayesian Dynamic Model for Incomplete Preferences with No-Choice Options in Conjoint Analysis","authors":"R. Igari, Makito Takeuchi","doi":"10.2139/ssrn.3652086","DOIUrl":null,"url":null,"abstract":"In the analysis of ranking data such as ranking based conjoint analysis, it is common that all preference ranks are obtained in each trial. However, if there is an no-choice option in alternatives such as conjoint profiles, the ranking ends there, and partial ranking data with a structure depending on the individuals and the trials is observed. We propose a rank-ordered logit model and Bayesian estimation method for partial ranking data with no-choice options that have different ranking structures for each individual and trial. In the model, we consider the latent variables that vary according to each individual and time and decompose them into individual and temporal heterogeneity. Specifically, we consider individuals' heterogeneities using a hierarchical Bayesian model, individuals' learning and evolution of preference using a dynamic linear model, and estimate parameters via the Markov chain Monte Carlo method. For empirical analysis, we apply the proposed model to the analysis of the ranking data obtained by the conjoint measurement method. From the results of conjoint data analysis for smartphones, it is confirmed that the preference or relative importance of the attributes change among trials.","PeriodicalId":11465,"journal":{"name":"Econometrics: Econometric & Statistical Methods - General eJournal","volume":"51 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics: Econometric & Statistical Methods - General eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3652086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the analysis of ranking data such as ranking based conjoint analysis, it is common that all preference ranks are obtained in each trial. However, if there is an no-choice option in alternatives such as conjoint profiles, the ranking ends there, and partial ranking data with a structure depending on the individuals and the trials is observed. We propose a rank-ordered logit model and Bayesian estimation method for partial ranking data with no-choice options that have different ranking structures for each individual and trial. In the model, we consider the latent variables that vary according to each individual and time and decompose them into individual and temporal heterogeneity. Specifically, we consider individuals' heterogeneities using a hierarchical Bayesian model, individuals' learning and evolution of preference using a dynamic linear model, and estimate parameters via the Markov chain Monte Carlo method. For empirical analysis, we apply the proposed model to the analysis of the ranking data obtained by the conjoint measurement method. From the results of conjoint data analysis for smartphones, it is confirmed that the preference or relative importance of the attributes change among trials.
联合分析中无选择不完全偏好的贝叶斯动态模型
在基于排序的联合分析等排序数据分析中,通常在每次试验中得到所有的偏好排序。但是,如果在联合概况等替代方案中存在无选择选项,则排序到此结束,并且观察到具有依赖于个体和试验的结构的部分排序数据。我们提出了一种秩序logit模型和贝叶斯估计方法,用于无选择选项的部分排序数据,这些数据对每个个体和试验具有不同的排序结构。在模型中,我们考虑了随个体和时间变化的潜在变量,并将其分解为个体和时间异质性。具体而言,我们使用分层贝叶斯模型考虑个体的异质性,使用动态线性模型考虑个体的学习和偏好进化,并通过马尔可夫链蒙特卡罗方法估计参数。在实证分析方面,我们将提出的模型应用于联合测量法获得的排名数据的分析。从智能手机的联合数据分析结果中,证实了属性的偏好或相对重要性在试验之间发生变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信