Fabrication of PMMA/PANI/Fe3O4 as a Novel Conducting Hybrid Coating

Q2 Materials Science
M. Ghorbani, S. Fazli, Mohammad Soleimani Lashkenari
{"title":"Fabrication of PMMA/PANI/Fe3O4 as a Novel Conducting Hybrid Coating","authors":"M. Ghorbani, S. Fazli, Mohammad Soleimani Lashkenari","doi":"10.1080/03602559.2017.1332205","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this paper, an excellent new hybrid coating including poly(methyl methacrylate) (PMMA), polyaniline (PANI), and magnetite nanoparticles (Fe3O4) was obtained. Fe3O4 nanoparticles were synthesized using coprecipitation method, and then magnetite nanoparticles have been dispersed into the PANI to increase compatibility with PMMA. Also, PANI/Fe3O4 nanocomposites were synthesized through in situ emulsion polymerization, and then PMMA/PANI/Fe3O4 hybrid coating was successfully synthesized using batch emulsion polymerization method. Structure, morphology and thermal stability of the samples were characterized using Fourier transform infrared, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and thermal gravimetric analysis (TGA). The synthesized samples were well distributed with an average diameter smaller than 20 nm. Microscopy and X-ray photoelectron spectroscopy results illustrated a great dispersion of magnetite nanoparticles in hybrid matrix. Moreover, the TGA results demonstrated that the PMMA/PANI/Fe3O4 hybrid coating nanoparticle is an excellent hybrid coating with high thermal resistance. GRAPHICAL ABSTRACT","PeriodicalId":20629,"journal":{"name":"Polymer-Plastics Technology and Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer-Plastics Technology and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/03602559.2017.1332205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 11

Abstract

ABSTRACT In this paper, an excellent new hybrid coating including poly(methyl methacrylate) (PMMA), polyaniline (PANI), and magnetite nanoparticles (Fe3O4) was obtained. Fe3O4 nanoparticles were synthesized using coprecipitation method, and then magnetite nanoparticles have been dispersed into the PANI to increase compatibility with PMMA. Also, PANI/Fe3O4 nanocomposites were synthesized through in situ emulsion polymerization, and then PMMA/PANI/Fe3O4 hybrid coating was successfully synthesized using batch emulsion polymerization method. Structure, morphology and thermal stability of the samples were characterized using Fourier transform infrared, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and thermal gravimetric analysis (TGA). The synthesized samples were well distributed with an average diameter smaller than 20 nm. Microscopy and X-ray photoelectron spectroscopy results illustrated a great dispersion of magnetite nanoparticles in hybrid matrix. Moreover, the TGA results demonstrated that the PMMA/PANI/Fe3O4 hybrid coating nanoparticle is an excellent hybrid coating with high thermal resistance. GRAPHICAL ABSTRACT
新型导电杂化涂层PMMA/PANI/Fe3O4的制备
摘要本文制备了一种由聚甲基丙烯酸甲酯(PMMA)、聚苯胺(PANI)和磁铁矿纳米颗粒(Fe3O4)组成的新型高性能杂化涂层。采用共沉淀法合成了Fe3O4纳米颗粒,并将磁铁矿纳米颗粒分散到聚苯胺中以提高与PMMA的相容性。采用原位乳液聚合法制备了PANI/Fe3O4纳米复合材料,并采用间歇乳液聚合法制备了PMMA/PANI/Fe3O4杂化涂层。采用傅里叶变换红外、x射线衍射、扫描电镜、透射电镜和热重分析(TGA)对样品的结构、形貌和热稳定性进行了表征。合成的样品分布均匀,平均直径小于20 nm。显微镜和x射线光电子能谱分析结果表明,磁铁矿纳米颗粒在杂化基质中具有较强的分散性。此外,TGA结果表明,PMMA/PANI/Fe3O4杂化涂层纳米颗粒是一种优异的高热阻杂化涂层。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Polymer-Plastics Technology and Engineering
Polymer-Plastics Technology and Engineering 工程技术-高分子科学
CiteScore
1.71
自引率
0.00%
发文量
0
审稿时长
4 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信