{"title":"A probabilistic approach to quasilinear parabolic PDEs with obstacle and Neumann problems","authors":"Lishun Xiao, Shengjun Fan, D. Tian","doi":"10.1051/ps/2019023","DOIUrl":null,"url":null,"abstract":"In this paper, by a probabilistic approach we prove that there exists a unique viscosity solution to obstacle problems of quasilinear parabolic PDEs combined with Neumann boundary conditions and algebra equations. The existence and uniqueness for adapted solutions of fully coupled forward-backward stochastic differential equations with reflections play a crucial role. Compared with existing works, in our result the spatial variable of solutions of PDEs lives in a region without convexity constraints, the second order coefficient of PDEs depends on the gradient of the solution, and the required conditions for the coefficients are weaker.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/ps/2019023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper, by a probabilistic approach we prove that there exists a unique viscosity solution to obstacle problems of quasilinear parabolic PDEs combined with Neumann boundary conditions and algebra equations. The existence and uniqueness for adapted solutions of fully coupled forward-backward stochastic differential equations with reflections play a crucial role. Compared with existing works, in our result the spatial variable of solutions of PDEs lives in a region without convexity constraints, the second order coefficient of PDEs depends on the gradient of the solution, and the required conditions for the coefficients are weaker.