Brandon Del Bel, Jongyeon Kim, C. Kim, S. Sapatnekar
{"title":"Improving STT-MRAM density through multibit error correction","authors":"Brandon Del Bel, Jongyeon Kim, C. Kim, S. Sapatnekar","doi":"10.7873/DATE2014.195","DOIUrl":null,"url":null,"abstract":"STT-MRAMs are prone to data corruption due to inadvertent bit flips. Traditional methods enhance robustness at the cost of area/energy by using larger cell sizes to improve the thermal stability of the MTJ cells. This paper employs multibit error correction with DRAM-style refreshing to mitigate errors and provides a methodology for determining the optimal level of correction. A detailed analysis demonstrates that the reduction in nonvolatility requirements afforded by strong error correction translates to significantly lower area for the memory array compared to simpler ECC schemes, even when accounting for the increased overhead of error correction.","PeriodicalId":6550,"journal":{"name":"2014 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"11 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"54","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7873/DATE2014.195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 54
Abstract
STT-MRAMs are prone to data corruption due to inadvertent bit flips. Traditional methods enhance robustness at the cost of area/energy by using larger cell sizes to improve the thermal stability of the MTJ cells. This paper employs multibit error correction with DRAM-style refreshing to mitigate errors and provides a methodology for determining the optimal level of correction. A detailed analysis demonstrates that the reduction in nonvolatility requirements afforded by strong error correction translates to significantly lower area for the memory array compared to simpler ECC schemes, even when accounting for the increased overhead of error correction.