{"title":"The dataminer's guide to scalable mixed-membership and nonparametric bayesian models","authors":"Amr Ahmed, Alex Smola","doi":"10.1145/2487575.2506181","DOIUrl":null,"url":null,"abstract":"Large amounts of data arise in a multitude of situations, ranging from bioinformatics to astronomy, manufacturing, and medical applications. For concreteness our tutorial focuses on data obtained in the context of the internet, such as user generated content (microblogs, e-mails, messages), behavioral data (locations, interactions, clicks, queries), and graphs. Due to its magnitude, much of the challenges are to extract structure and interpretable models without the need for additional labels, i.e. to design effective unsupervised techniques. We present design patterns for hierarchical nonparametric Bayesian models, efficient inference algorithms, and modeling tools to describe salient aspects of the data.","PeriodicalId":20472,"journal":{"name":"Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2487575.2506181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Large amounts of data arise in a multitude of situations, ranging from bioinformatics to astronomy, manufacturing, and medical applications. For concreteness our tutorial focuses on data obtained in the context of the internet, such as user generated content (microblogs, e-mails, messages), behavioral data (locations, interactions, clicks, queries), and graphs. Due to its magnitude, much of the challenges are to extract structure and interpretable models without the need for additional labels, i.e. to design effective unsupervised techniques. We present design patterns for hierarchical nonparametric Bayesian models, efficient inference algorithms, and modeling tools to describe salient aspects of the data.