Fixation Prediction based on Scene Contours

Tengfei Zhan, M. Ye, Wen-Wen Jiang, Yongjie Li, Kaifu Yang
{"title":"Fixation Prediction based on Scene Contours","authors":"Tengfei Zhan, M. Ye, Wen-Wen Jiang, Yongjie Li, Kaifu Yang","doi":"10.1109/SSCI44817.2019.9002897","DOIUrl":null,"url":null,"abstract":"Previous works suggest that scene contours play important roles in guiding visual attention. In this study, a computational model is proposed to improve the performance in visual saliency prediction by integrating the low- and mid-level visual cues and evaluate the contribution of scene contours in guiding visual attention. Firstly, we define three kinds of Gestalt principles based on mid-level cues, including contour density, closure, and symmetry to characterize the potential salient regions. In addition, we employ the classical bottom-up methods to generate low-level saliency maps. Finally, the proposed method combines the low-level cues from natural images and the mid-level cues from the corresponding contours to improve the fixation prediction. Experimental results show that the contour-based midlevel cues can remarkably improve the performance of the bottomup models in fixation prediction.","PeriodicalId":6729,"journal":{"name":"2019 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"12 1","pages":"2548-2554"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI44817.2019.9002897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Previous works suggest that scene contours play important roles in guiding visual attention. In this study, a computational model is proposed to improve the performance in visual saliency prediction by integrating the low- and mid-level visual cues and evaluate the contribution of scene contours in guiding visual attention. Firstly, we define three kinds of Gestalt principles based on mid-level cues, including contour density, closure, and symmetry to characterize the potential salient regions. In addition, we employ the classical bottom-up methods to generate low-level saliency maps. Finally, the proposed method combines the low-level cues from natural images and the mid-level cues from the corresponding contours to improve the fixation prediction. Experimental results show that the contour-based midlevel cues can remarkably improve the performance of the bottomup models in fixation prediction.
基于场景轮廓的注视预测
以往的研究表明,场景轮廓在引导视觉注意力方面起着重要作用。本研究提出了一个计算模型,通过整合中低水平视觉线索来提高视觉显著性预测的性能,并评估了场景轮廓对视觉注意引导的贡献。首先,我们定义了三种基于中级线索的格式塔原则,包括轮廓密度、闭合性和对称性,以表征潜在的显著区域。此外,我们采用经典的自底向上方法生成低级显著性图。最后,该方法结合了自然图像的低水平线索和相应轮廓的中级线索,提高了注视预测效果。实验结果表明,基于轮廓的中级线索能显著提高自底向上模型的注视预测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信