Application of the Loewner-Kufarev theory to the construction of a parametric set of univalent functions of a certain form

IF 0.3 Q4 MECHANICS
O. Zadorozhnaya, V. Kochetkov
{"title":"Application of the Loewner-Kufarev theory to the construction of a parametric set of univalent functions of a certain form","authors":"O. Zadorozhnaya, V. Kochetkov","doi":"10.17223/19988621/75/1","DOIUrl":null,"url":null,"abstract":"This work relates to the theory of Loewner-Kufarev differential equations, which are a part of the geometric function theory. We apply the well-known second Loewner-Kufarev differential equation to construct a parametric family of univalent functions in the unit disk g(z, t) for each fixed non-negative value of the parameter t generalizing the known parametric families. The article also uses various alternative approaches and provides their comparative analysis. The results of the study can be considered as one sufficient condition for the uniqueness of regular functions in a unit disk. Leading Russian scientists made a great contribution to the development of the geometric function theory based the variational-parametric method for studying functionals and found some Loewner-Kufarev differential equations. There are three sections in the work. The first one applies the Loewner-Kufarev equation to construct a parametric set of univalent functions of a certain type. In the second section, we introduce a special class of regular functions in the unit disk with a fixed convex function, and prove the univalence property for functions of this class. Here we also show one more method for constructing a parametric family of univalent functions different from the methods described in the first paragraph. The third section is devoted to alternative methods for constructing one-parameter sets of univalent functions. AMS Mathematical Subject Classification: 35С15","PeriodicalId":43729,"journal":{"name":"Vestnik Tomskogo Gosudarstvennogo Universiteta-Matematika i Mekhanika-Tomsk State University Journal of Mathematics and Mechanics","volume":"60 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vestnik Tomskogo Gosudarstvennogo Universiteta-Matematika i Mekhanika-Tomsk State University Journal of Mathematics and Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17223/19988621/75/1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

This work relates to the theory of Loewner-Kufarev differential equations, which are a part of the geometric function theory. We apply the well-known second Loewner-Kufarev differential equation to construct a parametric family of univalent functions in the unit disk g(z, t) for each fixed non-negative value of the parameter t generalizing the known parametric families. The article also uses various alternative approaches and provides their comparative analysis. The results of the study can be considered as one sufficient condition for the uniqueness of regular functions in a unit disk. Leading Russian scientists made a great contribution to the development of the geometric function theory based the variational-parametric method for studying functionals and found some Loewner-Kufarev differential equations. There are three sections in the work. The first one applies the Loewner-Kufarev equation to construct a parametric set of univalent functions of a certain type. In the second section, we introduce a special class of regular functions in the unit disk with a fixed convex function, and prove the univalence property for functions of this class. Here we also show one more method for constructing a parametric family of univalent functions different from the methods described in the first paragraph. The third section is devoted to alternative methods for constructing one-parameter sets of univalent functions. AMS Mathematical Subject Classification: 35С15
Loewner-Kufarev理论在构造某形式一元函数参数集中的应用
这项工作涉及到loener - kufarev微分方程理论,它是几何函数理论的一部分。我们应用众所周知的第二loener - kufarev微分方程,在单位圆盘g(z, t)中,对参数t的每一个固定的非负值,构造了一组一元函数的参数族,推广了已知的参数族。本文还使用了各种替代方法,并对其进行了比较分析。研究结果可作为单位圆盘上正则函数唯一性的一个充分条件。俄国著名的科学家在变分参数方法的基础上,对几何函数理论的发展做出了巨大的贡献,并发现了一些loener - kufarev微分方程。这部作品有三个部分。第一种方法是利用loener - kufarev方程构造一类单价函数的参数集。在第二节中,我们引入了具有固定凸函数的单位圆盘上的一类特殊正则函数,并证明了该类函数的唯一性。在这里,我们还展示了另一种构造参数单价函数族的方法,与第一段中描述的方法不同。第三部分专门讨论构造一元函数的单参数集的替代方法。AMS数学学科分类:35С15
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
66.70%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信