Pregelatinized starch as a cohesion promoter improves mechanical property and surgical performance of calcium phosphate bone cement: the effect of starch type
IF 2.9 4区 材料科学Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Rui Zhang, Huiling Liu, H. Zhou, Chunyong Liang, X. Wang, Huilin Yang, Yanjie Bai, Lei Yang
{"title":"Pregelatinized starch as a cohesion promoter improves mechanical property and surgical performance of calcium phosphate bone cement: the effect of starch type","authors":"Rui Zhang, Huiling Liu, H. Zhou, Chunyong Liang, X. Wang, Huilin Yang, Yanjie Bai, Lei Yang","doi":"10.1080/10667857.2022.2127640","DOIUrl":null,"url":null,"abstract":"ABSTRACT Calcium phosphate cement (CPC) has potentials in orthopaedics and orthodontics but it has significant limitations such as low mechanical strength, low injectability and instability in body. Starches from five botanical sources were used as cohesion additives to prepare calcium phosphate bone cement (CPB) and the starch source showed significant impact on physicochemical properties of the CPBs. CPB modified by pregelatinised waxy maize starch (CPB-W) had the highest mechanical strength, longest setting time, and most compact structure compared with other CPBs. As the amylose content increased, the viscosity of starch modified cement paste increased, and the cured cement had lower density and mechanical strength. It appears that starch with a low amylose content significantly improves the surgical performance and mechanical strength of CPC. CPB-W also exhibited good cytocompatibility to MC3T3-E1 cells. Starch modified CPBs are considered as promising injectable bone cements for minimally invasive surgery applications like vertebroplasty and kyphoplasty.","PeriodicalId":18270,"journal":{"name":"Materials Technology","volume":"58 1","pages":"3110 - 3121"},"PeriodicalIF":2.9000,"publicationDate":"2022-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/10667857.2022.2127640","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
ABSTRACT Calcium phosphate cement (CPC) has potentials in orthopaedics and orthodontics but it has significant limitations such as low mechanical strength, low injectability and instability in body. Starches from five botanical sources were used as cohesion additives to prepare calcium phosphate bone cement (CPB) and the starch source showed significant impact on physicochemical properties of the CPBs. CPB modified by pregelatinised waxy maize starch (CPB-W) had the highest mechanical strength, longest setting time, and most compact structure compared with other CPBs. As the amylose content increased, the viscosity of starch modified cement paste increased, and the cured cement had lower density and mechanical strength. It appears that starch with a low amylose content significantly improves the surgical performance and mechanical strength of CPC. CPB-W also exhibited good cytocompatibility to MC3T3-E1 cells. Starch modified CPBs are considered as promising injectable bone cements for minimally invasive surgery applications like vertebroplasty and kyphoplasty.
期刊介绍:
Materials Technology: Advanced Performance Materials provides an international medium for the communication of progress in the field of functional materials (advanced materials in which composition, structure and surface are functionalised to confer specific, applications-oriented properties). The focus is on materials for biomedical, electronic, photonic and energy applications. Contributions should address the physical, chemical, or engineering sciences that underpin the design and application of these materials. The scientific and engineering aspects may include processing and structural characterisation from the micro- to nanoscale to achieve specific functionality.