Multilevel augmented Lagrangian solvers for overconstrained contact formulations

R. Krause, M. Weiser
{"title":"Multilevel augmented Lagrangian solvers for overconstrained contact formulations","authors":"R. Krause, M. Weiser","doi":"10.1051/proc/202171175","DOIUrl":null,"url":null,"abstract":"Multigrid methods for two-body contact problems are mostly based on special mortar discretizations, nonlinear Gauss-Seidel solvers, and solution-adapted coarse grid spaces. Their high computational efficiency comes at the cost of a complex implementation and a nonsymmetric master-slave discretization of the nonpenetration condition. Here we investigate an alternative symmetric and overconstrained segment-to-segment contact formulation that allows for a simple implementation based on standard multigrid and a symmetric treatment of contact boundaries, but leads to nonunique multipliers. For the solution of the arising quadratic programs, we propose augmented Lagrangian multigrid with overlapping block Gauss-Seidel smoothers. Approximation and convergence properties are studied numerically at standard test problems.","PeriodicalId":53260,"journal":{"name":"ESAIM Proceedings and Surveys","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESAIM Proceedings and Surveys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/proc/202171175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Multigrid methods for two-body contact problems are mostly based on special mortar discretizations, nonlinear Gauss-Seidel solvers, and solution-adapted coarse grid spaces. Their high computational efficiency comes at the cost of a complex implementation and a nonsymmetric master-slave discretization of the nonpenetration condition. Here we investigate an alternative symmetric and overconstrained segment-to-segment contact formulation that allows for a simple implementation based on standard multigrid and a symmetric treatment of contact boundaries, but leads to nonunique multipliers. For the solution of the arising quadratic programs, we propose augmented Lagrangian multigrid with overlapping block Gauss-Seidel smoothers. Approximation and convergence properties are studied numerically at standard test problems.
过约束接触公式的多水平增广拉格朗日解
两体接触问题的多重网格方法主要基于特殊的砂浆离散化、非线性高斯-赛德尔解和自适应粗糙网格空间。它们的高计算效率是以复杂的实现和非穿透条件的非对称主从离散化为代价的。在这里,我们研究了另一种对称和过度约束的段对段接触公式,该公式允许基于标准多重网格和接触边界的对称处理的简单实现,但会导致非唯一乘数。对于出现的二次规划,我们提出了具有重叠块高斯-塞德尔平滑的增广拉格朗日多重网格。对标准测试问题的逼近性和收敛性进行了数值研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信