Phase retrieval from Fourier measurements with masks

IF 1.2 4区 数学 Q2 MATHEMATICS, APPLIED
Huiping Li, Song Li
{"title":"Phase retrieval from Fourier measurements with masks","authors":"Huiping Li, Song Li","doi":"10.3934/IPI.2021028","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>This paper concerns the problem of phase retrieval from Fourier measurements with random masks. Here we focus on researching two kinds of random masks. Firstly, we utilize the Fourier measurements with real masks to estimate a general signal <inline-formula><tex-math id=\"M1\">\\begin{document}$ \\mathit{\\boldsymbol{x}}_0\\in \\mathbb{R}^d $\\end{document}</tex-math></inline-formula> in noiseless case when <inline-formula><tex-math id=\"M2\">\\begin{document}$ d $\\end{document}</tex-math></inline-formula> is even. It is demonstrated that <inline-formula><tex-math id=\"M3\">\\begin{document}$ O(\\log^2d) $\\end{document}</tex-math></inline-formula> real random masks are able to ensure accurate recovery of <inline-formula><tex-math id=\"M4\">\\begin{document}$ \\mathit{\\boldsymbol{x}}_0 $\\end{document}</tex-math></inline-formula>. Then we find that such real masks are not adaptable to reconstruct complex signals of even dimension. Subsequently, we prove that <inline-formula><tex-math id=\"M5\">\\begin{document}$ O(\\log^4d) $\\end{document}</tex-math></inline-formula> complex masks are enough to stably estimate a general signal <inline-formula><tex-math id=\"M6\">\\begin{document}$ \\mathit{\\boldsymbol{x}}_0\\in \\mathbb{C}^d $\\end{document}</tex-math></inline-formula> under bounded noise interference, which extends E. Candès et al.'s work. Meanwhile, we establish tighter error estimations for real signals of even dimensions or complex signals of odd dimensions by using <inline-formula><tex-math id=\"M7\">\\begin{document}$ O(\\log^2d) $\\end{document}</tex-math></inline-formula> real masks. Finally, we intend to tackle with the noisy phase problem about an <inline-formula><tex-math id=\"M8\">\\begin{document}$ s $\\end{document}</tex-math></inline-formula>-sparse signal by a robust and efficient approach, namely, two-stage algorithm. Based on the stable guarantees for general signals, we show that the <inline-formula><tex-math id=\"M9\">\\begin{document}$ s $\\end{document}</tex-math></inline-formula>-sparse signal <inline-formula><tex-math id=\"M10\">\\begin{document}$ \\mathit{\\boldsymbol{x}}_0 $\\end{document}</tex-math></inline-formula> can be stably recovered from composite measurements under near-optimal sample complexity up to a <inline-formula><tex-math id=\"M11\">\\begin{document}$ \\log $\\end{document}</tex-math></inline-formula> factor, namely, <inline-formula><tex-math id=\"M12\">\\begin{document}$ O(s\\log(\\frac{ed}{s})\\log^4(s\\log(\\frac{ed}{s}))) $\\end{document}</tex-math></inline-formula></p>","PeriodicalId":50274,"journal":{"name":"Inverse Problems and Imaging","volume":"23 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inverse Problems and Imaging","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/IPI.2021028","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 5

Abstract

This paper concerns the problem of phase retrieval from Fourier measurements with random masks. Here we focus on researching two kinds of random masks. Firstly, we utilize the Fourier measurements with real masks to estimate a general signal \begin{document}$ \mathit{\boldsymbol{x}}_0\in \mathbb{R}^d $\end{document} in noiseless case when \begin{document}$ d $\end{document} is even. It is demonstrated that \begin{document}$ O(\log^2d) $\end{document} real random masks are able to ensure accurate recovery of \begin{document}$ \mathit{\boldsymbol{x}}_0 $\end{document}. Then we find that such real masks are not adaptable to reconstruct complex signals of even dimension. Subsequently, we prove that \begin{document}$ O(\log^4d) $\end{document} complex masks are enough to stably estimate a general signal \begin{document}$ \mathit{\boldsymbol{x}}_0\in \mathbb{C}^d $\end{document} under bounded noise interference, which extends E. Candès et al.'s work. Meanwhile, we establish tighter error estimations for real signals of even dimensions or complex signals of odd dimensions by using \begin{document}$ O(\log^2d) $\end{document} real masks. Finally, we intend to tackle with the noisy phase problem about an \begin{document}$ s $\end{document}-sparse signal by a robust and efficient approach, namely, two-stage algorithm. Based on the stable guarantees for general signals, we show that the \begin{document}$ s $\end{document}-sparse signal \begin{document}$ \mathit{\boldsymbol{x}}_0 $\end{document} can be stably recovered from composite measurements under near-optimal sample complexity up to a \begin{document}$ \log $\end{document} factor, namely, \begin{document}$ O(s\log(\frac{ed}{s})\log^4(s\log(\frac{ed}{s}))) $\end{document}

相位检索从傅立叶测量与掩模
This paper concerns the problem of phase retrieval from Fourier measurements with random masks. Here we focus on researching two kinds of random masks. Firstly, we utilize the Fourier measurements with real masks to estimate a general signal \begin{document}$ \mathit{\boldsymbol{x}}_0\in \mathbb{R}^d $\end{document} in noiseless case when \begin{document}$ d $\end{document} is even. It is demonstrated that \begin{document}$ O(\log^2d) $\end{document} real random masks are able to ensure accurate recovery of \begin{document}$ \mathit{\boldsymbol{x}}_0 $\end{document}. Then we find that such real masks are not adaptable to reconstruct complex signals of even dimension. Subsequently, we prove that \begin{document}$ O(\log^4d) $\end{document} complex masks are enough to stably estimate a general signal \begin{document}$ \mathit{\boldsymbol{x}}_0\in \mathbb{C}^d $\end{document} under bounded noise interference, which extends E. Candès et al.'s work. Meanwhile, we establish tighter error estimations for real signals of even dimensions or complex signals of odd dimensions by using \begin{document}$ O(\log^2d) $\end{document} real masks. Finally, we intend to tackle with the noisy phase problem about an \begin{document}$ s $\end{document}-sparse signal by a robust and efficient approach, namely, two-stage algorithm. Based on the stable guarantees for general signals, we show that the \begin{document}$ s $\end{document}-sparse signal \begin{document}$ \mathit{\boldsymbol{x}}_0 $\end{document} can be stably recovered from composite measurements under near-optimal sample complexity up to a \begin{document}$ \log $\end{document} factor, namely, \begin{document}$ O(s\log(\frac{ed}{s})\log^4(s\log(\frac{ed}{s}))) $\end{document}
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Inverse Problems and Imaging
Inverse Problems and Imaging 数学-物理:数学物理
CiteScore
2.50
自引率
0.00%
发文量
55
审稿时长
>12 weeks
期刊介绍: Inverse Problems and Imaging publishes research articles of the highest quality that employ innovative mathematical and modeling techniques to study inverse and imaging problems arising in engineering and other sciences. Every published paper has a strong mathematical orientation employing methods from such areas as control theory, discrete mathematics, differential geometry, harmonic analysis, functional analysis, integral geometry, mathematical physics, numerical analysis, optimization, partial differential equations, and stochastic and statistical methods. The field of applications includes medical and other imaging, nondestructive testing, geophysical prospection and remote sensing as well as image analysis and image processing. This journal is committed to recording important new results in its field and will maintain the highest standards of innovation and quality. To be published in this journal, a paper must be correct, novel, nontrivial and of interest to a substantial number of researchers and readers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信