Yingchun Liang, J. Dou, Q. Bai, Shumei Wang, Mingjun Chen, Yan Zhao, S. Dong
{"title":"Subatomic Imaging of Si (001) Surface by Molecular Dynamic Simulation","authors":"Yingchun Liang, J. Dou, Q. Bai, Shumei Wang, Mingjun Chen, Yan Zhao, S. Dong","doi":"10.1109/NEMS.2006.334670","DOIUrl":null,"url":null,"abstract":"In this study we predict the frequency modulation atomic force microscopy (FM-AFM) subatomic frequency shift images of a Si (001) surface using empirical potential molecular dynamic methods. We model carbon single-wall nanotube caped tip and Si (001) surface to investigate the tip-surface interaction. The simulation shows that the FM-AFM imaging force mainly comes from C-Si/C-C chemical covalent bonding forces; the long range nonbond van der Waals forces are slight and can be ignored","PeriodicalId":6362,"journal":{"name":"2006 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems","volume":"20 1","pages":"1156-1159"},"PeriodicalIF":0.0000,"publicationDate":"2006-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMS.2006.334670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this study we predict the frequency modulation atomic force microscopy (FM-AFM) subatomic frequency shift images of a Si (001) surface using empirical potential molecular dynamic methods. We model carbon single-wall nanotube caped tip and Si (001) surface to investigate the tip-surface interaction. The simulation shows that the FM-AFM imaging force mainly comes from C-Si/C-C chemical covalent bonding forces; the long range nonbond van der Waals forces are slight and can be ignored