{"title":"Commutative monads, diagrams and knots","authors":"Dan Piponi","doi":"10.1145/1596550.1596553","DOIUrl":null,"url":null,"abstract":"There is certain diverse class of diagram that is found in a variety of branches of mathematics and which all share this property: there is a common scheme for translating all of these diagrams into useful functional code. These diagrams include Bayesian networks, quantum computer circuits [1], trace diagrams for multilinear algebra [2], Feynman diagrams and even knot diagrams [3]. I will show how a common thread lying behind these diagrams is the presence of a commutative monad and I will show how we can use this fact to translate these diagrams directly into Haskell code making use of do-notation for monads. I will also show a number of examples of such translated code at work and use it to solve problems ranging from Bayesian inference to the topological problem of untangling tangled strings. Along the way I hope to give a little insight into the subjects mentioned above and illustrate how a functional programming language can be a valuable tool in mathematical research and experimentation.","PeriodicalId":20504,"journal":{"name":"Proceedings of the 18th ACM SIGPLAN international conference on Functional programming","volume":"51 1","pages":"231-232"},"PeriodicalIF":0.0000,"publicationDate":"2009-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 18th ACM SIGPLAN international conference on Functional programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1596550.1596553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
There is certain diverse class of diagram that is found in a variety of branches of mathematics and which all share this property: there is a common scheme for translating all of these diagrams into useful functional code. These diagrams include Bayesian networks, quantum computer circuits [1], trace diagrams for multilinear algebra [2], Feynman diagrams and even knot diagrams [3]. I will show how a common thread lying behind these diagrams is the presence of a commutative monad and I will show how we can use this fact to translate these diagrams directly into Haskell code making use of do-notation for monads. I will also show a number of examples of such translated code at work and use it to solve problems ranging from Bayesian inference to the topological problem of untangling tangled strings. Along the way I hope to give a little insight into the subjects mentioned above and illustrate how a functional programming language can be a valuable tool in mathematical research and experimentation.