An Efficient Use of Principal Component Analysis in Workload Characterization-A Study

Jyotirmoy Sarkar , Snehanshu Saha , Surbhi Agrawal
{"title":"An Efficient Use of Principal Component Analysis in Workload Characterization-A Study","authors":"Jyotirmoy Sarkar ,&nbsp;Snehanshu Saha ,&nbsp;Surbhi Agrawal","doi":"10.1016/j.aasri.2014.08.012","DOIUrl":null,"url":null,"abstract":"<div><p>PCA is a useful statistical technique that has found application in fields such as face recognition, image compression, dimensionality reduction, Computer System performance analysis etc. It is a common technique for finding patterns in data of high dimension. In this paper, we present the basic idea of principal component analysis as a general approach that extends to various popular data analysis techniques. We state the mathematical theory behind PCA and focus on monitoring system performance using the PCA algorithm. Next, an Eigen value-Eigenvector dynamics is elaborated which aims to reduce the computational cost of the experiment. The Mathematical theory is explored and validated. For the purpose of illustration we present the algorithmic implementation details and numerical examples over real time and synthetic datasets.</p></div>","PeriodicalId":100008,"journal":{"name":"AASRI Procedia","volume":"8 ","pages":"Pages 68-74"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.aasri.2014.08.012","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AASRI Procedia","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212671614000791","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

PCA is a useful statistical technique that has found application in fields such as face recognition, image compression, dimensionality reduction, Computer System performance analysis etc. It is a common technique for finding patterns in data of high dimension. In this paper, we present the basic idea of principal component analysis as a general approach that extends to various popular data analysis techniques. We state the mathematical theory behind PCA and focus on monitoring system performance using the PCA algorithm. Next, an Eigen value-Eigenvector dynamics is elaborated which aims to reduce the computational cost of the experiment. The Mathematical theory is explored and validated. For the purpose of illustration we present the algorithmic implementation details and numerical examples over real time and synthetic datasets.

主成分分析在工作量表征中的有效应用研究
PCA是一种有用的统计技术,在人脸识别、图像压缩、降维、计算机系统性能分析等领域得到了广泛的应用。它是在高维数据中查找模式的常用技术。在本文中,我们提出了主成分分析的基本思想,作为一种一般方法,扩展到各种流行的数据分析技术。我们陈述了主成分分析背后的数学理论,并着重于使用主成分分析算法监测系统性能。其次,阐述了一种特征值-特征向量动力学,旨在减少实验的计算成本。对数学理论进行了探索和验证。为了说明目的,我们在实时和合成数据集上提供算法实现细节和数值示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信