Mahsa JaFari-Pouyani, Samineh Kaki, A. Babakhanian
{"title":"New PGE Modified Electrode Comprising Ni NPs/1,5-Diphenylcarbazide Film Capable for Analyzing Oxytocin","authors":"Mahsa JaFari-Pouyani, Samineh Kaki, A. Babakhanian","doi":"10.1166/sl.2020.4287","DOIUrl":null,"url":null,"abstract":"This study focuses on the compatibility of square wave voltammetry technique with new modified graphite pencil electrode to quantify Oxytocin. Ni-Nano particles and 1,5-diphenylcarbazide modifiers were quickly electro-deposited by cyclic voltammetry sweeping technique on the bare surface\n of a graphite pencil electrode. The electrochemical and morphological assessments were accomplished with cyclic voltammetry, square wave voltammetry and scanning electron microscopy techniques. The proposed electrochemical sensor revealed a good electro catalytic response to Oxytocin concerning\n the parameters α = 0.42, log Ks =3.44 and Γ = 8.72×10−10 in the optimized pH of 4 and the working potential of about 0.35 V. The new sensor also exhibited a linear response to Oxytocin over the concentration range of 125 to 350 nmolL−1\n with the limit of detection of 41.53 nmolL−1. Moreover, the applicability of the proposed sensor was successfully examined and it became usable to determine Oxytocin accurately and precisely in real samples such as human blood serum sample without any serious side interference.","PeriodicalId":21781,"journal":{"name":"Sensor Letters","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensor Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/sl.2020.4287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This study focuses on the compatibility of square wave voltammetry technique with new modified graphite pencil electrode to quantify Oxytocin. Ni-Nano particles and 1,5-diphenylcarbazide modifiers were quickly electro-deposited by cyclic voltammetry sweeping technique on the bare surface
of a graphite pencil electrode. The electrochemical and morphological assessments were accomplished with cyclic voltammetry, square wave voltammetry and scanning electron microscopy techniques. The proposed electrochemical sensor revealed a good electro catalytic response to Oxytocin concerning
the parameters α = 0.42, log Ks =3.44 and Γ = 8.72×10−10 in the optimized pH of 4 and the working potential of about 0.35 V. The new sensor also exhibited a linear response to Oxytocin over the concentration range of 125 to 350 nmolL−1
with the limit of detection of 41.53 nmolL−1. Moreover, the applicability of the proposed sensor was successfully examined and it became usable to determine Oxytocin accurately and precisely in real samples such as human blood serum sample without any serious side interference.
期刊介绍:
The growing interest and activity in the field of sensor technologies requires a forum for rapid dissemination of important results: Sensor Letters is that forum. Sensor Letters offers scientists, engineers and medical experts timely, peer-reviewed research on sensor science and technology of the highest quality. Sensor Letters publish original rapid communications, full papers and timely state-of-the-art reviews encompassing the fundamental and applied research on sensor science and technology in all fields of science, engineering, and medicine. Highest priority will be given to short communications reporting important new scientific and technological findings.