Total dominating functions of graphs: antiregularity versus regularity

Pub Date : 2020-12-31 DOI:10.47443/cm.2020.0045
Maria Talanda-Fisher, Ping Zhang
{"title":"Total dominating functions of graphs: antiregularity versus regularity","authors":"Maria Talanda-Fisher, Ping Zhang","doi":"10.47443/cm.2020.0045","DOIUrl":null,"url":null,"abstract":"A set S of vertices in a nontrivial connected graph G is a total dominating set if every vertex of G is adjacent to some vertex of S. The minimum cardinality of a total dominating set for G is the total domination number of G. A function h : V (G) → {0, 1} is a total dominating function of a graph G if σh(v) = ∑ u∈N(v) h(u) ≥ 1 for every vertex v of G. A total dominating function h of a nontrivial graph G is irregular if σh(u) 6= σh(v) for every two vertices u and v of G. While no graph possesses an irregular total dominating function, a graph G has an antiregular total dominating function h if there are exactly two vertices u and v of G such that σh(u) = σh(v). It is shown that for every integer n ≥ 3, there are exactly two non-isomorphic graphs of order n having an antiregular total dominating function. If h is a total dominating function of a graph G such that σh(v) is the same constant k for every vertex v of G, then h is a k-regular total dominating function of G. We present some results dealing with properties of regular total dominating functions of graphs. In particular, regular total dominating functions of trees are investigated. The only possible regular total dominating functions for a nontrivial tree are 1-regular total dominating functions. We characterize those trees having a 1-regular total dominating function. We also investigate k-regular total dominating functions of several well-known classes of regular graphs for various values of k.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.47443/cm.2020.0045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A set S of vertices in a nontrivial connected graph G is a total dominating set if every vertex of G is adjacent to some vertex of S. The minimum cardinality of a total dominating set for G is the total domination number of G. A function h : V (G) → {0, 1} is a total dominating function of a graph G if σh(v) = ∑ u∈N(v) h(u) ≥ 1 for every vertex v of G. A total dominating function h of a nontrivial graph G is irregular if σh(u) 6= σh(v) for every two vertices u and v of G. While no graph possesses an irregular total dominating function, a graph G has an antiregular total dominating function h if there are exactly two vertices u and v of G such that σh(u) = σh(v). It is shown that for every integer n ≥ 3, there are exactly two non-isomorphic graphs of order n having an antiregular total dominating function. If h is a total dominating function of a graph G such that σh(v) is the same constant k for every vertex v of G, then h is a k-regular total dominating function of G. We present some results dealing with properties of regular total dominating functions of graphs. In particular, regular total dominating functions of trees are investigated. The only possible regular total dominating functions for a nontrivial tree are 1-regular total dominating functions. We characterize those trees having a 1-regular total dominating function. We also investigate k-regular total dominating functions of several well-known classes of regular graphs for various values of k.
分享
查看原文
图的总支配函数:反正则与正则
如果非平凡连通图G的每个顶点都与S的某个顶点相邻,则G的一个顶点集S就是一个总支配集。G的一个总支配集的最小基数是G的总支配数。V (G)→{0,1}是一个总控制图G的函数如果σh (V) =∑u N∈(V) h (u)≥1每个顶点V (G .总控制函数h非平凡图G是不规则如果σh (u) 6 =σh (V)每两个顶点u和V (G .虽然没有图具有不规则的总控制函数,一个图G有一个antiregular总控制h函数如果有两个顶点u和V (G,σh (u) =σh (V)。证明了对于每一个整数n≥3,都有两个n阶的非同构图具有反正则的全支配函数。如果h是图G的一个全控制函数,使得σh(v)对G的每个顶点v都是相同的常数k,则h是G的一个k正则全控制函数,给出了图的正则全控制函数的一些性质。特别地,研究了树的正则全支配函数。非平凡树唯一可能的正则全支配函数是1正则全支配函数。我们用1正则总支配函数来描述这些树。我们还研究了几种著名的正则图的k-正则全支配函数对不同k值的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信