Differences in caffeine 3-demethylation activity among inbred mouse strains: a comparison of hepatic Cyp1a2 gene expression between two inbred strains.
W. L. Casley, W. L. Casley, J.Allan Menzies, Michel Girard, Lyse Larocque, N. Mousseau, Larry W. Whitehouse, Thomas W. Moon
{"title":"Differences in caffeine 3-demethylation activity among inbred mouse strains: a comparison of hepatic Cyp1a2 gene expression between two inbred strains.","authors":"W. L. Casley, W. L. Casley, J.Allan Menzies, Michel Girard, Lyse Larocque, N. Mousseau, Larry W. Whitehouse, Thomas W. Moon","doi":"10.1093/TOXSCI/40.2.228","DOIUrl":null,"url":null,"abstract":"The 3-demethylation of caffeine can be used as an index of cytochrome P450 CYP1A2 activity in vivo. We compared the plasma levels of caffeine and the 3-demethylated metabolite. 1,7-dimethylxanthine, in six common inbred strains (A/J, P/J, BALB/cJ, C3H/HeJ, AKR/J, and SWR/J) and one inbred strain (APN) derived in our laboratory from outbred Swiss-Webster mice on the basis of its relative susceptibility to acetaminophen-induced hepatotoxicity. We found significant variations between a number of the common strains, all of which produced significantly higher caffeine 3-demethylation indices than our APN strain. In three of the six common strains, there was a significant difference between males and females, with the females having consistently lower 1,7-xanthine/caffeine ratios. Hepatic Cyp1a2 expression was compared between APN and C3H/HeJ males. Microsomal methoxyresorufin O-demethylation, acetanilide 4-hydroxylation, and CYP1A2 immunoreactive protein levels were significantly higher in C3H/HeJ relative to APN mice, as were hepatic CYP1A2 mRNA levels. These results indicate the importance of strain and gender to the outcome of pharmacological or toxicological studies involving CYP1A2-mediated metabolism, as well as the suitability of the plasma 1,7-dimethylxanthine/caffeine ratio as a marker of CYP1A2 activity in the mouse. The striking differences observed between the APN and C3H/HeJ mice suggest that these strains may be suitable for a genetic analysis of the regulation of the basal expression of CYP1A2, a key enzyme in procarcinogen activation.","PeriodicalId":12658,"journal":{"name":"Fundamental and applied toxicology : official journal of the Society of Toxicology","volume":"16 1","pages":"228-37"},"PeriodicalIF":0.0000,"publicationDate":"1997-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamental and applied toxicology : official journal of the Society of Toxicology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/TOXSCI/40.2.228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
Abstract
The 3-demethylation of caffeine can be used as an index of cytochrome P450 CYP1A2 activity in vivo. We compared the plasma levels of caffeine and the 3-demethylated metabolite. 1,7-dimethylxanthine, in six common inbred strains (A/J, P/J, BALB/cJ, C3H/HeJ, AKR/J, and SWR/J) and one inbred strain (APN) derived in our laboratory from outbred Swiss-Webster mice on the basis of its relative susceptibility to acetaminophen-induced hepatotoxicity. We found significant variations between a number of the common strains, all of which produced significantly higher caffeine 3-demethylation indices than our APN strain. In three of the six common strains, there was a significant difference between males and females, with the females having consistently lower 1,7-xanthine/caffeine ratios. Hepatic Cyp1a2 expression was compared between APN and C3H/HeJ males. Microsomal methoxyresorufin O-demethylation, acetanilide 4-hydroxylation, and CYP1A2 immunoreactive protein levels were significantly higher in C3H/HeJ relative to APN mice, as were hepatic CYP1A2 mRNA levels. These results indicate the importance of strain and gender to the outcome of pharmacological or toxicological studies involving CYP1A2-mediated metabolism, as well as the suitability of the plasma 1,7-dimethylxanthine/caffeine ratio as a marker of CYP1A2 activity in the mouse. The striking differences observed between the APN and C3H/HeJ mice suggest that these strains may be suitable for a genetic analysis of the regulation of the basal expression of CYP1A2, a key enzyme in procarcinogen activation.