Heights and representations of split tori

IF 0.3 4区 数学 Q4 MATHEMATICS
V. Talamanca
{"title":"Heights and representations of split tori","authors":"V. Talamanca","doi":"10.5802/jtnb.1015","DOIUrl":null,"url":null,"abstract":"Let Gm denote the d-dimensional split torus defined over a number field k. To each Gm-module E we associate a height function hE defined by means of the spectral height on GL(E). This gives rise to a height pairing between the monoid of irreducible Gm-modules of Gm and the group Gm ( k ) . Our main results are a characterization of those Gm-modules E for which hE satisfeis Northcott’s finiteness theorem, the determination of the kernels of the height pairing, as well as, for a few special classes of Gm-modules, of the group of automorphisms that preserve hE .","PeriodicalId":48896,"journal":{"name":"Journal De Theorie Des Nombres De Bordeaux","volume":"SE-13 1","pages":"41-57"},"PeriodicalIF":0.3000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal De Theorie Des Nombres De Bordeaux","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/jtnb.1015","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let Gm denote the d-dimensional split torus defined over a number field k. To each Gm-module E we associate a height function hE defined by means of the spectral height on GL(E). This gives rise to a height pairing between the monoid of irreducible Gm-modules of Gm and the group Gm ( k ) . Our main results are a characterization of those Gm-modules E for which hE satisfeis Northcott’s finiteness theorem, the determination of the kernels of the height pairing, as well as, for a few special classes of Gm-modules, of the group of automorphisms that preserve hE .
分割环面的高度和表示
设Gm表示定义在数字域k上的d维分裂环面。对于每个Gm模块E,我们关联一个由GL(E)上的光谱高度定义的高度函数hE。这就得到了Gm的不可约Gm-模的模群与群Gm (k)之间的高度配对。我们的主要结果是刻画了那些hE满足Northcott有限定理的gm -模E,确定了高度对的核,以及对于一些gm -模的特殊类,确定了保持hE的自同构群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
35
期刊介绍: The Journal de Théorie des Nombres de Bordeaux publishes original papers on number theory and related topics (not published elsewhere).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信