Operator estimates for the crushed ice problem

Asymptot. Anal. Pub Date : 2017-10-09 DOI:10.3233/ASY-181480
A. Khrabustovskyi, O. Post
{"title":"Operator estimates for the crushed ice problem","authors":"A. Khrabustovskyi, O. Post","doi":"10.3233/ASY-181480","DOIUrl":null,"url":null,"abstract":"Let $\\Delta_{\\Omega_\\varepsilon}$ be the Dirichlet Laplacian in the domain $\\Omega_\\varepsilon:=\\Omega\\setminus\\left(\\cup_i D_{i \\varepsilon}\\right)$. Here $\\Omega\\subset\\mathbb{R}^n$ and $\\{D_{i \\varepsilon}\\}_{i}$ is a family of tiny identical holes (\"ice pieces\") distributed periodically in $\\mathbb{R}^n$ with period $\\varepsilon$. We denote by $\\mathrm{cap}(D_{i \\varepsilon})$ the capacity of a single hole. It was known for a long time that $-\\Delta_{\\Omega_\\varepsilon}$ converges to the operator $-\\Delta_{\\Omega}+q$ in strong resolvent sense provided the limit $q:=\\lim_{\\varepsilon\\to 0} \\mathrm{cap}(D_{i\\varepsilon}) \\varepsilon^{-n}$ exists and is finite. In the current contribution we improve this result deriving estimates for the rate of convergence in terms of operator norms. As an application, we establish the uniform convergence of the corresponding semi-groups and (for bounded $\\Omega$) an estimate for the difference of the $k$-th eigenvalue of $-\\Delta_{\\Omega_\\varepsilon}$ and $-\\Delta_{\\Omega_\\varepsilon}+q$. Our proofs relies on an abstract scheme for studying the convergence of operators in varying Hilbert spaces developed previously by the second author.","PeriodicalId":8603,"journal":{"name":"Asymptot. Anal.","volume":"SE-13 1","pages":"137-161"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asymptot. Anal.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/ASY-181480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

Let $\Delta_{\Omega_\varepsilon}$ be the Dirichlet Laplacian in the domain $\Omega_\varepsilon:=\Omega\setminus\left(\cup_i D_{i \varepsilon}\right)$. Here $\Omega\subset\mathbb{R}^n$ and $\{D_{i \varepsilon}\}_{i}$ is a family of tiny identical holes ("ice pieces") distributed periodically in $\mathbb{R}^n$ with period $\varepsilon$. We denote by $\mathrm{cap}(D_{i \varepsilon})$ the capacity of a single hole. It was known for a long time that $-\Delta_{\Omega_\varepsilon}$ converges to the operator $-\Delta_{\Omega}+q$ in strong resolvent sense provided the limit $q:=\lim_{\varepsilon\to 0} \mathrm{cap}(D_{i\varepsilon}) \varepsilon^{-n}$ exists and is finite. In the current contribution we improve this result deriving estimates for the rate of convergence in terms of operator norms. As an application, we establish the uniform convergence of the corresponding semi-groups and (for bounded $\Omega$) an estimate for the difference of the $k$-th eigenvalue of $-\Delta_{\Omega_\varepsilon}$ and $-\Delta_{\Omega_\varepsilon}+q$. Our proofs relies on an abstract scheme for studying the convergence of operators in varying Hilbert spaces developed previously by the second author.
对碎冰问题的算子估计
设$\Delta_{\Omega_\varepsilon}$为域$\Omega_\varepsilon:=\Omega\setminus\left(\cup_i D_{i \varepsilon}\right)$中的狄利克雷拉普拉斯式。在这里$\Omega\subset\mathbb{R}^n$和$\{D_{i \varepsilon}\}_{i}$是一组相同的小洞(“冰块”),它们周期性地分布在$\mathbb{R}^n$,周期为$\varepsilon$。我们用$\mathrm{cap}(D_{i \varepsilon})$表示单孔的容量。人们早就知道,当极限$q:=\lim_{\varepsilon\to 0} \mathrm{cap}(D_{i\varepsilon}) \varepsilon^{-n}$存在且为有限时,$-\Delta_{\Omega_\varepsilon}$在强分解意义下收敛于算子$-\Delta_{\Omega}+q$。在当前的贡献中,我们改进了这一结果,导出了算子范数的收敛速度估计。作为应用,我们建立了相应半群的一致收敛性,并(对于有界$\Omega$)估计了$-\Delta_{\Omega_\varepsilon}$与$-\Delta_{\Omega_\varepsilon}+q$的$k$ -th特征值之差。我们的证明依赖于一个抽象的方案来研究算子在变化的希尔伯特空间中的收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信