Gallium Oxide Heterojunction Diodes for 400 °C High‐Temperature Applications

S. H. Sohel, Ramchandra M. Kotecha, Imran S. Khan, K. Heinselman, S. Narumanchi, M. Brooks Tellekamp, A. Zakutayev
{"title":"Gallium Oxide Heterojunction Diodes for 400 °C High‐Temperature Applications","authors":"S. H. Sohel, Ramchandra M. Kotecha, Imran S. Khan, K. Heinselman, S. Narumanchi, M. Brooks Tellekamp, A. Zakutayev","doi":"10.1002/pssa.202300535","DOIUrl":null,"url":null,"abstract":"β‐Ga2O3‐based semiconductor devices are expected to have significantly improved high‐power and high‐temperature performance due to its ultrawide bandgap of close to 5 eV. However, the high‐temperature operation of these ultrawide‐bandgap devices is usually limited by the relatively low 1–2 eV built‐in potential at the Schottky barrier with most high‐work‐function metals. Herein, heterojunction p‐NiO/n‐β‐Ga2O3 diodes fabrication and optimization for high‐temperature device applications are reported, demonstrating a current rectification ratio (ION/IOFF) of more than 106 at 410 °C. The NiO heterojunction diode can achieve higher turn‐on (VON) voltage and lower reverse leakage current compared to the Ni‐based Schottky diode fabricated on the same single‐crystal β‐Ga2O3 substrate, despite charge transport dominated by interfacial recombination. Electrical characterization and device modeling show that these advantages are due to a higher built‐in potential and additional band offset. These results suggest that heterojunction p–n diodes based on β‐Ga2O3 can significantly improve high‐temperature electronic device and sensor performance.","PeriodicalId":87717,"journal":{"name":"Physica status solidi (A): Applied research","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica status solidi (A): Applied research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/pssa.202300535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

β‐Ga2O3‐based semiconductor devices are expected to have significantly improved high‐power and high‐temperature performance due to its ultrawide bandgap of close to 5 eV. However, the high‐temperature operation of these ultrawide‐bandgap devices is usually limited by the relatively low 1–2 eV built‐in potential at the Schottky barrier with most high‐work‐function metals. Herein, heterojunction p‐NiO/n‐β‐Ga2O3 diodes fabrication and optimization for high‐temperature device applications are reported, demonstrating a current rectification ratio (ION/IOFF) of more than 106 at 410 °C. The NiO heterojunction diode can achieve higher turn‐on (VON) voltage and lower reverse leakage current compared to the Ni‐based Schottky diode fabricated on the same single‐crystal β‐Ga2O3 substrate, despite charge transport dominated by interfacial recombination. Electrical characterization and device modeling show that these advantages are due to a higher built‐in potential and additional band offset. These results suggest that heterojunction p–n diodes based on β‐Ga2O3 can significantly improve high‐temperature electronic device and sensor performance.
用于400°C高温应用的氧化镓异质结二极管
基于β - Ga2O3的半导体器件由于其接近5 eV的超宽带隙,有望显著改善高功率和高温性能。然而,这些超宽带隙器件的高温工作通常受到大多数高功功能金属在肖特基势垒处相对较低的1-2 eV内建电位的限制。本文报道了用于高温器件应用的异质结p - NiO/n - β - Ga2O3二极管的制造和优化,证明了在410°C下电流整流比(ION/IOFF)超过106。与在相同单晶β - Ga2O3衬底上制备的Ni基肖特基二极管相比,NiO异质结二极管可以获得更高的导通电压和更低的反向漏电流,尽管界面复合主导了电荷输运。电气特性和器件建模表明,这些优势是由于更高的内置电位和额外的频带偏移。这些结果表明,基于β - Ga2O3的异质结p-n二极管可以显著提高高温电子器件和传感器的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信