B. Marcon, J. Viguier, K. Candelier, M. Thévenon, J. Butaud, L. Pignolet, Adélaïde Gartili, L. Denaud, R. Collet, M. Romagnoli
{"title":"Heat treatment of poplar plywood: modifications in physical, mechanical and durability properties","authors":"B. Marcon, J. Viguier, K. Candelier, M. Thévenon, J. Butaud, L. Pignolet, Adélaïde Gartili, L. Denaud, R. Collet, M. Romagnoli","doi":"10.3832/ifor4159-015","DOIUrl":null,"url":null,"abstract":"Plywood made of poplar are limited to indoor usages since poplar exhibits a rather low natural durability. Recently, wood heat treatments have been applied to improve properties such as decay susceptibility and dimensional stability. This study examines the potential of exposing poplar plywood to heat treatment to extend the potential of applications of this engineered wood product to outdoor end uses, and new markets accordingly. Plywood panels were glued with two different adhesive formulations based on the same melamine-urea-formaldehyde (MUF) resin to compare their respective ability to resist to the heat treatment. These different plywoods were thermally modified in saturated steam conditions at 215 °C for 2 hours following the Ther-moWood ® process, up to reach 14% in mass loss. The durability improvement brought by the heat treatment was assessed in order to evaluate any possible outdoor uses for such plywood. After all the conducted analyses, the potential to use heat treated poplar plywoods in humid interior and protected exterior service conditions was confirmed.","PeriodicalId":13323,"journal":{"name":"Iforest - Biogeosciences and Forestry","volume":"45 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iforest - Biogeosciences and Forestry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3832/ifor4159-015","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 1
Abstract
Plywood made of poplar are limited to indoor usages since poplar exhibits a rather low natural durability. Recently, wood heat treatments have been applied to improve properties such as decay susceptibility and dimensional stability. This study examines the potential of exposing poplar plywood to heat treatment to extend the potential of applications of this engineered wood product to outdoor end uses, and new markets accordingly. Plywood panels were glued with two different adhesive formulations based on the same melamine-urea-formaldehyde (MUF) resin to compare their respective ability to resist to the heat treatment. These different plywoods were thermally modified in saturated steam conditions at 215 °C for 2 hours following the Ther-moWood ® process, up to reach 14% in mass loss. The durability improvement brought by the heat treatment was assessed in order to evaluate any possible outdoor uses for such plywood. After all the conducted analyses, the potential to use heat treated poplar plywoods in humid interior and protected exterior service conditions was confirmed.
期刊介绍:
The journal encompasses a broad range of research aspects concerning forest science: forest ecology, biodiversity/genetics and ecophysiology, silviculture, forest inventory and planning, forest protection and monitoring, forest harvesting, landscape ecology, forest history, wood technology.