Joint Modelling of Longitudinal-Time-To-Event with Categorical Variable Indicators of Latent Classes: Application to Tuberculosis Data

IF 0.3 Q4 MATHEMATICS
A. Azeez, Mutambayi Ruffin, N. James, Qin Yongsong
{"title":"Joint Modelling of Longitudinal-Time-To-Event with Categorical Variable Indicators of Latent Classes: Application to Tuberculosis Data","authors":"A. Azeez, Mutambayi Ruffin, N. James, Qin Yongsong","doi":"10.3844/jmssp.2020.90.103","DOIUrl":null,"url":null,"abstract":"In many clinical and reliability research reports, the outcomes of basic interest is the time to a particular event happens in order to indicate the person’s “true” state of health or survival status. Different models have been used to analyze such data separately, but may be unsuitable if the longitudinal and health status measures are correlated. In this study, mixed effect and Cox model of latent class are jointly modelled for the correlation between the covariates, observed and unobserved health status variable with binary latent class indicators. A Bayesian approach for Maximum likelihood estimates is implemented using Markov Chain Monte Carlo (MCMC) techniques. The repeated and survival measures are independently assumed to be a Gaussian process for latent bivariate. The joint model is applied to TB cohort study for the HIV comorbidity effect on event time for Tuberculosis patients. R package is used for curvilinear repeated measures of latent class model and joint latent class models for both repeated measures and survival time event.","PeriodicalId":41981,"journal":{"name":"Jordan Journal of Mathematics and Statistics","volume":"43 1","pages":"90-103"},"PeriodicalIF":0.3000,"publicationDate":"2020-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jordan Journal of Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3844/jmssp.2020.90.103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In many clinical and reliability research reports, the outcomes of basic interest is the time to a particular event happens in order to indicate the person’s “true” state of health or survival status. Different models have been used to analyze such data separately, but may be unsuitable if the longitudinal and health status measures are correlated. In this study, mixed effect and Cox model of latent class are jointly modelled for the correlation between the covariates, observed and unobserved health status variable with binary latent class indicators. A Bayesian approach for Maximum likelihood estimates is implemented using Markov Chain Monte Carlo (MCMC) techniques. The repeated and survival measures are independently assumed to be a Gaussian process for latent bivariate. The joint model is applied to TB cohort study for the HIV comorbidity effect on event time for Tuberculosis patients. R package is used for curvilinear repeated measures of latent class model and joint latent class models for both repeated measures and survival time event.
潜在类别分类变量指标纵向时间到事件联合建模:在结核病数据中的应用
在许多临床和可靠性研究报告中,基本感兴趣的结果是特定事件发生的时间,以指示人的 -€œtrueâ -健康状态或生存状态。不同的模型分别用于分析这些数据,但如果纵向和健康状况测量相关联,则可能不适合。本研究采用混合效应和潜在类别的Cox模型联合建模,对协变量、观察和未观察健康状况变量与二元潜在类别指标之间的相关性进行建模。使用马尔可夫链蒙特卡罗(MCMC)技术实现了最大似然估计的贝叶斯方法。对于潜在的二元变量,重复测量和生存测量被独立地假设为高斯过程。将联合模型应用于结核病队列研究,研究HIV合并症对结核病患者事件时间的影响。潜伏类模型的曲线重复测量和联合潜伏类模型的重复测量和生存时间事件均使用R包。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.70
自引率
33.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信