Auguste Olivry, J. Langou, L. Pouchet, P. Sadayappan, F. Rastello
{"title":"Automated derivation of parametric data movement lower bounds for affine programs","authors":"Auguste Olivry, J. Langou, L. Pouchet, P. Sadayappan, F. Rastello","doi":"10.1145/3385412.3385989","DOIUrl":null,"url":null,"abstract":"Researchers and practitioners have for long worked on improving the computational complexity of algorithms, focusing on reducing the number of operations needed to perform a computation. However the hardware trend nowadays clearly shows a higher performance and energy cost for data movements than computations: quality algorithms have to minimize data movements as much as possible. The theoretical operational complexity of an algorithm is a function of the total number of operations that must be executed, regardless of the order in which they will actually be executed. But theoretical data movement (or, I/O) complexity is fundamentally different: one must consider all possible legal schedules of the operations to determine the minimal number of data movements achievable, a major theoretical challenge. I/O complexity has been studied via complex manual proofs, e.g., refined from Ω(n3/√S) for matrix-multiply on a cache size S by Hong & Kung to 2n3/√S by Smith et al. While asymptotic complexity may be sufficient to compare I/O potential between broadly different algorithms, the accuracy of the reasoning depends on the tightness of these I/O lower bounds. Precisely, exposing constants is essential to enable precise comparison between different algorithms: for example the 2n3/√S lower bound allows to demonstrate the optimality of panel-panel tiling for matrix-multiplication. We present the first static analysis to automatically derive non-asymptotic parametric expressions of data movement lower bounds with scaling constants, for arbitrary affine computations. Our approach is fully automatic, assisting algorithm designers to reason about I/O complexity and make educated decisions about algorithmic alternatives.","PeriodicalId":20580,"journal":{"name":"Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3385412.3385989","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19
Abstract
Researchers and practitioners have for long worked on improving the computational complexity of algorithms, focusing on reducing the number of operations needed to perform a computation. However the hardware trend nowadays clearly shows a higher performance and energy cost for data movements than computations: quality algorithms have to minimize data movements as much as possible. The theoretical operational complexity of an algorithm is a function of the total number of operations that must be executed, regardless of the order in which they will actually be executed. But theoretical data movement (or, I/O) complexity is fundamentally different: one must consider all possible legal schedules of the operations to determine the minimal number of data movements achievable, a major theoretical challenge. I/O complexity has been studied via complex manual proofs, e.g., refined from Ω(n3/√S) for matrix-multiply on a cache size S by Hong & Kung to 2n3/√S by Smith et al. While asymptotic complexity may be sufficient to compare I/O potential between broadly different algorithms, the accuracy of the reasoning depends on the tightness of these I/O lower bounds. Precisely, exposing constants is essential to enable precise comparison between different algorithms: for example the 2n3/√S lower bound allows to demonstrate the optimality of panel-panel tiling for matrix-multiplication. We present the first static analysis to automatically derive non-asymptotic parametric expressions of data movement lower bounds with scaling constants, for arbitrary affine computations. Our approach is fully automatic, assisting algorithm designers to reason about I/O complexity and make educated decisions about algorithmic alternatives.