Reconstruction of compressively sampled ultrasound images using dual prior information

A. Achim, A. Basarab, G. Tzagkarakis, P. Tsakalides, D. Kouamé
{"title":"Reconstruction of compressively sampled ultrasound images using dual prior information","authors":"A. Achim, A. Basarab, G. Tzagkarakis, P. Tsakalides, D. Kouamé","doi":"10.1109/ICIP.2014.7025256","DOIUrl":null,"url":null,"abstract":"This paper introduces a new technique for compressive sampling reconstruction of biomedical ultrasound images that exploits two types of prior information. On the one hand, our proposed approach is based on the observation that ultrasound RF echoes are best characterised statistically using alpha-stable distributions. On the other hand, through knowledge of the acquisition process, the support of the RF echoes in the Fourier domain can be easily inferred. Together, these two facts inform an iteratively reweighted least squares (IRLS) algorithm, which is shown to outperform previously proposed reconstruction techniques, both visually and in terms of two objective evaluation measures.","PeriodicalId":6856,"journal":{"name":"2014 IEEE International Conference on Image Processing (ICIP)","volume":"8 1","pages":"1283-1286"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2014.7025256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

This paper introduces a new technique for compressive sampling reconstruction of biomedical ultrasound images that exploits two types of prior information. On the one hand, our proposed approach is based on the observation that ultrasound RF echoes are best characterised statistically using alpha-stable distributions. On the other hand, through knowledge of the acquisition process, the support of the RF echoes in the Fourier domain can be easily inferred. Together, these two facts inform an iteratively reweighted least squares (IRLS) algorithm, which is shown to outperform previously proposed reconstruction techniques, both visually and in terms of two objective evaluation measures.
利用双先验信息重建压缩采样超声图像
介绍了一种利用两种先验信息对生物医学超声图像进行压缩采样重建的新技术。一方面,我们提出的方法是基于观察到超声射频回波使用α稳定分布是最好的统计特征。另一方面,通过对采集过程的了解,可以很容易地推断出射频回波在傅里叶域中的支持。总之,这两个事实为迭代加权最小二乘(IRLS)算法提供了信息,该算法在视觉和两个客观评价指标方面都优于先前提出的重建技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信