Evaluation of Primal-Dual Splitting Algorithm for MRI Reconstruction Using Spatio-Temporal Structure Tensor and L1-2 Norm

M. Rizkinia, M. Okuda
{"title":"Evaluation of Primal-Dual Splitting Algorithm for MRI Reconstruction Using Spatio-Temporal Structure Tensor and L1-2 Norm","authors":"M. Rizkinia, M. Okuda","doi":"10.7454/mst.v23i3.3892","DOIUrl":null,"url":null,"abstract":"Magnetic resonance imaging (MRI) is an essential medical imaging technique which is widely used for medical research and diagnosis. Dynamic MRI provides the observed object visualization through time and results in a spatiotemporal signal. The image sequences often contain redundant information in both spatial and temporal domains. To utilize this characteristic, we propose a spatio-temporal reconstruction approach based on compressive sensing theory. We apply spatio-temporal structure tensor using nuclear norm, in addition to the wavelet sparsity regularization. The spatio-temporal structure tensor is a matrix that consists of gradient components of the MRI data w.r.t the spatial and temporal domains. For the wavelet sparsity, we use L1 – L2 instead of L1 norm. We propose the algorithm using primaldual splitting (PDS) approach to solve the convex optimization problem. In the experiment, we investigate the potential benefit of adding the two regularizations to the compressive sensing problem. The algorithm is compared with PDSbased algorithm using conventional regularizations, i.e., wavelet sparsity and total variation. Our proposed algorithm performs superior results in terms of reconstruction accuracy and visual quality.","PeriodicalId":22842,"journal":{"name":"Theory of Computing Systems \\/ Mathematical Systems Theory","volume":"17 1","pages":"126-130"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory of Computing Systems \\/ Mathematical Systems Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7454/mst.v23i3.3892","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Magnetic resonance imaging (MRI) is an essential medical imaging technique which is widely used for medical research and diagnosis. Dynamic MRI provides the observed object visualization through time and results in a spatiotemporal signal. The image sequences often contain redundant information in both spatial and temporal domains. To utilize this characteristic, we propose a spatio-temporal reconstruction approach based on compressive sensing theory. We apply spatio-temporal structure tensor using nuclear norm, in addition to the wavelet sparsity regularization. The spatio-temporal structure tensor is a matrix that consists of gradient components of the MRI data w.r.t the spatial and temporal domains. For the wavelet sparsity, we use L1 – L2 instead of L1 norm. We propose the algorithm using primaldual splitting (PDS) approach to solve the convex optimization problem. In the experiment, we investigate the potential benefit of adding the two regularizations to the compressive sensing problem. The algorithm is compared with PDSbased algorithm using conventional regularizations, i.e., wavelet sparsity and total variation. Our proposed algorithm performs superior results in terms of reconstruction accuracy and visual quality.
基于时空结构张量和L1-2范数的MRI重构原对偶分割算法评价
磁共振成像(MRI)是一种重要的医学成像技术,广泛应用于医学研究和诊断。动态核磁共振成像提供了观察对象的时间可视化,并产生时空信号。图像序列通常在空间和时间域中都包含冗余信息。为了利用这一特性,我们提出了一种基于压缩感知理论的时空重构方法。在小波稀疏正则化的基础上,利用核范数应用时空结构张量。时空结构张量是由MRI数据在空间和时间域的梯度分量组成的矩阵。对于小波稀疏性,我们使用L1 - L2代替L1范数。我们提出了一种用原对偶分裂(PDS)方法求解凸优化问题的算法。在实验中,我们研究了在压缩感知问题中加入这两种正则化的潜在好处。将该算法与基于pds的常规正则化算法(即小波稀疏度和总变分)进行了比较。我们提出的算法在重建精度和视觉质量方面都有很好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信