{"title":"A redistributed bundle algorithm based on local convexification models for nonlinear nonsmooth DC programming","authors":"Jie Shen, Jia-Tong Li, Fangfang Guo, Na Xu","doi":"10.1515/jnma-2019-0049","DOIUrl":null,"url":null,"abstract":"Abstract For nonlinear nonsmooth DC programming (difference of convex functions), we introduce a new redistributed proximal bundle method. The subgradient information of both the DC components is gathered from some neighbourhood of the current stability center and it is used to build separately an approximation for each component in the DC representation. Especially we employ the nonlinear redistributed technique to model the second component of DC function by constructing a local convexification cutting plane. The corresponding convexification parameter is adjusted dynamically and is taken sufficiently large to make the `augmented' linearization errors nonnegative. Based on above techniques we obtain a new convex cutting plane model of the original objective function. Based on this new approximation the redistributed proximal bundle method is designed and the convergence of the proposed algorithm to a Clarke stationary point is proved. A simple numerical experiment is given to show the validity of the presented algorithm.","PeriodicalId":50109,"journal":{"name":"Journal of Numerical Mathematics","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jnma-2019-0049","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract For nonlinear nonsmooth DC programming (difference of convex functions), we introduce a new redistributed proximal bundle method. The subgradient information of both the DC components is gathered from some neighbourhood of the current stability center and it is used to build separately an approximation for each component in the DC representation. Especially we employ the nonlinear redistributed technique to model the second component of DC function by constructing a local convexification cutting plane. The corresponding convexification parameter is adjusted dynamically and is taken sufficiently large to make the `augmented' linearization errors nonnegative. Based on above techniques we obtain a new convex cutting plane model of the original objective function. Based on this new approximation the redistributed proximal bundle method is designed and the convergence of the proposed algorithm to a Clarke stationary point is proved. A simple numerical experiment is given to show the validity of the presented algorithm.
期刊介绍:
The Journal of Numerical Mathematics (formerly East-West Journal of Numerical Mathematics) contains high-quality papers featuring contemporary research in all areas of Numerical Mathematics. This includes the development, analysis, and implementation of new and innovative methods in Numerical Linear Algebra, Numerical Analysis, Optimal Control/Optimization, and Scientific Computing. The journal will also publish applications-oriented papers with significant mathematical content in computational fluid dynamics and other areas of computational engineering, finance, and life sciences.