Cayley--Klein Poisson Homogeneous Spaces

Q4 Mathematics
F. J. Herranz, Á. Ballesteros, I. Gutierrez-Sagredo, M. Santander
{"title":"Cayley--Klein Poisson Homogeneous Spaces","authors":"F. J. Herranz, Á. Ballesteros, I. Gutierrez-Sagredo, M. Santander","doi":"10.7546/giq-20-2019-161-183","DOIUrl":null,"url":null,"abstract":"The nine two-dimensional Cayley-Klein geometries are firstly reviewed by following a graded contraction approach. Each geometry is considered as a set of three symmetrical homogeneous spaces (of points and two kinds of lines), in such a manner that the graded contraction parameters determine their curvature and signature. Secondly, new Poisson homogeneous spaces are constructed by making use of certain Poisson-Lie structures on the corresponding motion groups. Therefore, the quantization of these spaces provides noncommutative analogues of the Cayley-Klein geometries. The kinematical interpretation for the semi-Riemannian and pseudo-Riemannian Cayley-Klein geometries is emphasized, since they are just Newtonian and Lorentzian spacetimes of constant curvature.","PeriodicalId":53425,"journal":{"name":"Geometry, Integrability and Quantization","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry, Integrability and Quantization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/giq-20-2019-161-183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 4

Abstract

The nine two-dimensional Cayley-Klein geometries are firstly reviewed by following a graded contraction approach. Each geometry is considered as a set of three symmetrical homogeneous spaces (of points and two kinds of lines), in such a manner that the graded contraction parameters determine their curvature and signature. Secondly, new Poisson homogeneous spaces are constructed by making use of certain Poisson-Lie structures on the corresponding motion groups. Therefore, the quantization of these spaces provides noncommutative analogues of the Cayley-Klein geometries. The kinematical interpretation for the semi-Riemannian and pseudo-Riemannian Cayley-Klein geometries is emphasized, since they are just Newtonian and Lorentzian spacetimes of constant curvature.
Cayley—Klein Poisson齐次空间
九种二维Cayley-Klein几何首先通过分级收缩方法进行了回顾。每个几何被认为是一组三个对称的均匀空间(点和两种线),以这样一种方式,梯度收缩参数决定了它们的曲率和特征。其次,利用相应运动群上的泊松-李结构构造新的泊松齐次空间。因此,这些空间的量化提供了非交换的类似于凯利-克莱因几何。强调了半黎曼和伪黎曼凯利-克莱因几何的运动学解释,因为它们只是牛顿和洛伦兹的常曲率时空。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geometry, Integrability and Quantization
Geometry, Integrability and Quantization Mathematics-Mathematical Physics
CiteScore
0.70
自引率
0.00%
发文量
4
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信