A. Iztayev, Sholpan Tursunbayeva, S. Zhiyenbayeva, G. Iskakova, A. Matibayeva, Raushan Izteliyeva, M. Yakiyayeva
{"title":"Highly Efficient Technology for Making Bread Using an Ion-ozone Mixture","authors":"A. Iztayev, Sholpan Tursunbayeva, S. Zhiyenbayeva, G. Iskakova, A. Matibayeva, Raushan Izteliyeva, M. Yakiyayeva","doi":"10.14716/ijtech.v14i4.4242","DOIUrl":null,"url":null,"abstract":". The article examined the ways of using highly effective technologies for the development of whole-wheat flour bread. Ion-ozone cavitation technology is used, which allows time reduction for dough making and bread baking. The flour used in the experiment is of various kinds of low-quality wheat: non-class wheat, class III, class IV, and class V wheat . During the experiments, the amino acid composition of wheat was determined, which has a large impact on the quality of the test. To obtain a high-quality dough, wheat grains of various lower classes were treated with ion-ozone cavitation treatment. The treatment was carried out using a universal ion-ozone cavitation installation, producing both ozone and molecular ions from oxygen contained in atmospheric air and processed using overpressure of crops. The experiment result shows that the method of processing with ion-ozone cavitation technology allows the improvement of the rheological properties of the dough, the reduction of baking time by 2 times, and the improvement of the quality of bread from whole-ground low-quality soft wheat flour. The obtained bread products in comparison with the control sample had higher organoleptic indices; according to several physico-chemical and organoleptic indices, a sample of bread from whole-wheat wheat of class III appeared in a more favorable light.","PeriodicalId":50285,"journal":{"name":"International Journal of Technology Management","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Technology Management","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.14716/ijtech.v14i4.4242","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
. The article examined the ways of using highly effective technologies for the development of whole-wheat flour bread. Ion-ozone cavitation technology is used, which allows time reduction for dough making and bread baking. The flour used in the experiment is of various kinds of low-quality wheat: non-class wheat, class III, class IV, and class V wheat . During the experiments, the amino acid composition of wheat was determined, which has a large impact on the quality of the test. To obtain a high-quality dough, wheat grains of various lower classes were treated with ion-ozone cavitation treatment. The treatment was carried out using a universal ion-ozone cavitation installation, producing both ozone and molecular ions from oxygen contained in atmospheric air and processed using overpressure of crops. The experiment result shows that the method of processing with ion-ozone cavitation technology allows the improvement of the rheological properties of the dough, the reduction of baking time by 2 times, and the improvement of the quality of bread from whole-ground low-quality soft wheat flour. The obtained bread products in comparison with the control sample had higher organoleptic indices; according to several physico-chemical and organoleptic indices, a sample of bread from whole-wheat wheat of class III appeared in a more favorable light.
期刊介绍:
The IJTM aims to provide a refereed and authoritative source of information in the field of managing with technology, and the management of engineering, science and technology. It seeks to establish channels of communication between government departments, technology executives in industry, commerce and related business, and academic experts in the field.