I. Yakimchuk, D. Korobkov, V. Pletneva, O. Ridzel, I. Varfolomeev, I. Reimers, Ilia Safonov, N. Evseev, O. Dinariev, A. Denisenko, A. Samokhvalov, V. Khan, A. Kusov, E. Tyurin, Aleksandr Korolev, R. Sitdikov, Evgeny Maksimov, O. Loznyuk
{"title":"Study of Reservoir Properties of Turonian Formation Using Digital Core Analysis","authors":"I. Yakimchuk, D. Korobkov, V. Pletneva, O. Ridzel, I. Varfolomeev, I. Reimers, Ilia Safonov, N. Evseev, O. Dinariev, A. Denisenko, A. Samokhvalov, V. Khan, A. Kusov, E. Tyurin, Aleksandr Korolev, R. Sitdikov, Evgeny Maksimov, O. Loznyuk","doi":"10.2118/206584-ms","DOIUrl":null,"url":null,"abstract":"\n The work demonstrates results of reservoir properties evaluation using a complex of laboratory and multiscale digital core or digital rock analysis. Rock properties (including relative phase permeabilities) were studied at different scales: from nanometers to meter (whole core).\n For the first time, cores from Turonian formation were characterized with digital rock analysis, which provided stationary relative permeabilities for gas-water under reservoir conditions. Lab determination of relative permeabilities was rather challenging for some low-permeability samples (<0.02 md), while digital analysis was successful even for them. Gas recovery in a depletion mode from different rock types was studied on a whole core model for different capillary pressures. Such studies are not conducted in the lab.","PeriodicalId":11052,"journal":{"name":"Day 3 Thu, October 14, 2021","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Thu, October 14, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/206584-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The work demonstrates results of reservoir properties evaluation using a complex of laboratory and multiscale digital core or digital rock analysis. Rock properties (including relative phase permeabilities) were studied at different scales: from nanometers to meter (whole core).
For the first time, cores from Turonian formation were characterized with digital rock analysis, which provided stationary relative permeabilities for gas-water under reservoir conditions. Lab determination of relative permeabilities was rather challenging for some low-permeability samples (<0.02 md), while digital analysis was successful even for them. Gas recovery in a depletion mode from different rock types was studied on a whole core model for different capillary pressures. Such studies are not conducted in the lab.