{"title":"Performance Optimization of Carbon Nano-Tube Field Effect Transistors by Tuning Parameters","authors":"Kriti Rai Saini, Shailesh Rajput, Yoon S. Choi","doi":"10.37256/jeee.1120221926","DOIUrl":null,"url":null,"abstract":"As transistors are scaled down to keep up with Moore's law, the semiconductor industry is facing several challenges due to the limitation of traditional Metal Oxide Semiconductor Field Effect Transistor (MOSFET) technology. To overcome this issue of scalability, various other technologies are being researched. Among them are Carbon Nano-Tube Field Effect Transistors (CNTFET), Ribbon Field Effect Transistors (RibbonFET), Graphene Nanoribbon Field Effect Transistor (GNRFET), and Fin shaped Field Effect Transistor (FinFET), which can substitute MOSFETs. Due to carbon nanotubes' excellent conductivity supremacy, CNTFETs are a promising new solution. However, implementing a CNTFET and making circuits from it is still challenging as CNTFETs can exhibit properties of both semiconductor and metal depending on various parameters. This paper will illustrate the characteristics of the CNTFET, compare the power consumption and propagation delay of basic logic gates made using the CNTFET and MOSFET technology. The parameter tuning is done by measuring the power and delay for all parameter values. The Simulation of CNTFET is done on the Stanford CNTFET model using H-Spice.","PeriodicalId":39047,"journal":{"name":"Journal of Electrical and Electronics Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrical and Electronics Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37256/jeee.1120221926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
As transistors are scaled down to keep up with Moore's law, the semiconductor industry is facing several challenges due to the limitation of traditional Metal Oxide Semiconductor Field Effect Transistor (MOSFET) technology. To overcome this issue of scalability, various other technologies are being researched. Among them are Carbon Nano-Tube Field Effect Transistors (CNTFET), Ribbon Field Effect Transistors (RibbonFET), Graphene Nanoribbon Field Effect Transistor (GNRFET), and Fin shaped Field Effect Transistor (FinFET), which can substitute MOSFETs. Due to carbon nanotubes' excellent conductivity supremacy, CNTFETs are a promising new solution. However, implementing a CNTFET and making circuits from it is still challenging as CNTFETs can exhibit properties of both semiconductor and metal depending on various parameters. This paper will illustrate the characteristics of the CNTFET, compare the power consumption and propagation delay of basic logic gates made using the CNTFET and MOSFET technology. The parameter tuning is done by measuring the power and delay for all parameter values. The Simulation of CNTFET is done on the Stanford CNTFET model using H-Spice.
期刊介绍:
Journal of Electrical and Electronics Engineering is a scientific interdisciplinary, application-oriented publication that offer to the researchers and to the PhD students the possibility to disseminate their novel and original scientific and research contributions in the field of electrical and electronics engineering. The articles are reviewed by professionals and the selection of the papers is based only on the quality of their content and following the next criteria: the papers presents the research results of the authors, the papers / the content of the papers have not been submitted or published elsewhere, the paper must be written in English, as well as the fact that the papers should include in the reference list papers already published in recent years in the Journal of Electrical and Electronics Engineering that present similar research results. The topics and instructions for authors of this journal can be found to the appropiate sections.