Ophidia: A full software stack for scientific data analytics

S. Fiore, Alessandro D'Anca, D. Elia, Cosimo Palazzo, Dean N. Williams, Ian T Foster, G. Aloisio
{"title":"Ophidia: A full software stack for scientific data analytics","authors":"S. Fiore, Alessandro D'Anca, D. Elia, Cosimo Palazzo, Dean N. Williams, Ian T Foster, G. Aloisio","doi":"10.1109/HPCSim.2014.6903706","DOIUrl":null,"url":null,"abstract":"The Ophidia project aims to provide a big data analytics platform solution that addresses scientific use cases related to large volumes of multidimensional data. In this work, the Ophidia software infrastructure is discussed in detail, presenting the entire software stack from level-0 (the Ophidia data store) to level-3 (the Ophidia web service front end). In particular, this paper presents the big data cube primitives provided by the Ophidia framework, discussing in detail the most relevant and available data cube manipulation operators. These primitives represent the proper foundations to build more complex data cube operators like the apex one presented in this paper. A massive data reduction experiment on a 1TB climate dataset is also presented to demonstrate the apex workflow in the context of the proposed framework.","PeriodicalId":6469,"journal":{"name":"2014 International Conference on High Performance Computing & Simulation (HPCS)","volume":"30 1","pages":"343-350"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on High Performance Computing & Simulation (HPCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCSim.2014.6903706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

The Ophidia project aims to provide a big data analytics platform solution that addresses scientific use cases related to large volumes of multidimensional data. In this work, the Ophidia software infrastructure is discussed in detail, presenting the entire software stack from level-0 (the Ophidia data store) to level-3 (the Ophidia web service front end). In particular, this paper presents the big data cube primitives provided by the Ophidia framework, discussing in detail the most relevant and available data cube manipulation operators. These primitives represent the proper foundations to build more complex data cube operators like the apex one presented in this paper. A massive data reduction experiment on a 1TB climate dataset is also presented to demonstrate the apex workflow in the context of the proposed framework.
Ophidia:用于科学数据分析的完整软件堆栈
Ophidia项目旨在提供一个大数据分析平台解决方案,解决与大量多维数据相关的科学用例。在这项工作中,详细讨论了Ophidia软件基础设施,展示了从0级(Ophidia数据存储)到3级(Ophidia web服务前端)的整个软件堆栈。特别地,本文介绍了由Ophidia框架提供的大数据立方体原语,详细讨论了最相关和可用的数据立方体操作算子。这些原语为构建更复杂的数据多维数据集操作符(如本文中介绍的顶点操作符)提供了适当的基础。本文还在一个1TB气候数据集上进行了大规模数据约简实验,以验证该框架下的顶点工作流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信