A Proposed Frequent Itemset Discovery Algorithm Based on Item Weights and Uncertainty

Hanaa Ibrahim Abu Zahra, Shaker El-Sappagh, Tarek El-Shishtawy
{"title":"A Proposed Frequent Itemset Discovery Algorithm Based on Item Weights and Uncertainty","authors":"Hanaa Ibrahim Abu Zahra, Shaker El-Sappagh, Tarek El-Shishtawy","doi":"10.4018/ijskd.2020010106","DOIUrl":null,"url":null,"abstract":"Most frequent itemset mining algorithms (FIMA) discover hidden relationships from unrelated items. They find the most frequent itemsets depending only on the frequency of the item's existence in the dataset. These algorithms give all items the same importance, and neglect the differences in importance of the items. They assume the full certainty of data, but in most cases, real word data may be uncertain. As a result, the data could be incomplete and/or imprecise. These two problems are the most common challenges that face FIMA algorithms. Some new algorithms proposed some solutions to face these two issues separately. In other words, some algorithms handle item importance only, and others handle uncertainty only. Few algorithms dealt with the two issues together. In this article, the single scan for weighted itemsets over the uncertain database (SSU-Wfim) is proposed. It depends on the single scan frequent itemsets algorithm (SS_FIM), and enhances it to deal with weighted items in an uncertain database. SSU_WFIM deals with the uncertainty of data by giving each item in a transaction an additional value to indicate occurrence likelihood. It gives the items different values to define the weight of them. It uses a table called Ptable to save the items and their probability values. This table is used to generate all possible candidates itemsets. The results indicate the high performance in aspects of runtime, memory consumption and scalability of SSU-Wfim comparing with the UApriori algorithm. The proposed algorithm saves time and memory with a percentage exceeds 70% for all tested datasets.","PeriodicalId":13656,"journal":{"name":"Int. J. Sociotechnology Knowl. Dev.","volume":"39 1","pages":"98-118"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Sociotechnology Knowl. Dev.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijskd.2020010106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Most frequent itemset mining algorithms (FIMA) discover hidden relationships from unrelated items. They find the most frequent itemsets depending only on the frequency of the item's existence in the dataset. These algorithms give all items the same importance, and neglect the differences in importance of the items. They assume the full certainty of data, but in most cases, real word data may be uncertain. As a result, the data could be incomplete and/or imprecise. These two problems are the most common challenges that face FIMA algorithms. Some new algorithms proposed some solutions to face these two issues separately. In other words, some algorithms handle item importance only, and others handle uncertainty only. Few algorithms dealt with the two issues together. In this article, the single scan for weighted itemsets over the uncertain database (SSU-Wfim) is proposed. It depends on the single scan frequent itemsets algorithm (SS_FIM), and enhances it to deal with weighted items in an uncertain database. SSU_WFIM deals with the uncertainty of data by giving each item in a transaction an additional value to indicate occurrence likelihood. It gives the items different values to define the weight of them. It uses a table called Ptable to save the items and their probability values. This table is used to generate all possible candidates itemsets. The results indicate the high performance in aspects of runtime, memory consumption and scalability of SSU-Wfim comparing with the UApriori algorithm. The proposed algorithm saves time and memory with a percentage exceeds 70% for all tested datasets.
一种基于项权和不确定性的频繁项集发现算法
最常见的项目集挖掘算法(FIMA)是从不相关的项目中发现隐藏的关系。他们只根据项目在数据集中出现的频率找到最频繁的项目集。这些算法给予所有项目相同的重要性,而忽略了项目的重要性差异。它们假设数据是完全确定的,但在大多数情况下,真实的单词数据可能是不确定的。因此,数据可能不完整和/或不精确。这两个问题是FIMA算法面临的最常见的挑战。一些新的算法分别针对这两个问题提出了一些解决方案。换句话说,一些算法只处理项目的重要性,而另一些算法只处理不确定性。很少有算法同时处理这两个问题。本文提出了加权项集在不确定数据库上的单次扫描方法(ssu - wfilm)。该算法基于单扫描频繁项集算法(SS_FIM),并对其进行了改进,以处理不确定数据库中的加权项。SSU_WFIM处理数据的不确定性,方法是为事务中的每个项目提供一个附加值,以指示发生的可能性。它为项目提供不同的值来定义它们的权重。它使用一个名为Ptable的表来保存项目及其概率值。该表用于生成所有可能的候选项集。结果表明,与UApriori算法相比,ssu - wfilm算法在运行时间、内存消耗和可扩展性方面具有较高的性能。该算法对所有测试数据集的时间和内存节省率均超过70%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信